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Calculations of critical misfit and thickness: An overview

Jan H. van der Merwe and W.A. uesser

Department of Physics, University of Pretoria, Pretoria 0002, South Africa.

This overview stresses the equilibrium/non-equilibrium nature of the
physical principles, as well as the basic properties of the models, used

to calculate critical misfit and critical thickness in epitaxy.

Hierdie oorsigvbeklemtoon die ewewigs/nie-ewewigs karakter van die

.fisiese beginsels, 'sowel as die basiese eienskappe van die modelle wat

gebruik word om kritieke wanpas en dikte in epitaksie te bereken.

Introduction ~

The imp&féance of the transition of an epitaxial interface between
crystals A and B from coherency to incoherency with misfit dislocations
(MD's) needs no motivation. The transition depends primarily on the
misfit f at the interface. The general specification of misfit has been

discussed by Jesserl and Braunz. In the case of rectangular interfacial

d&ymmetry we may write
f=(a=-b)/c (n

where ¢ = %-(a+b) when A and B are both thick and ¢ = a or b when A is
thin.3-5 For crystals with different symmetries, e.g. (111) f.c.c./(170)
‘.c.Cc. interfaces, the misfits in two orthogonal directions may be ;
6,7
The following modes of misfit accommodation (MA) will be considered:
(a) a misfit vernier (MV) when A-B is rigidlike7, (b) misfit strain (MS)A;
crystals homogeneously strained to reduce disregistry, (c) misfit

dislocations (MD's)4’5 (d) and a misfit strain gradient (MSG)8 from



lattice parameter a of A to b of B, MD's may be efficient (EMD),
inefficient (IMD), of screw character (SMD) or split up into partials.
Often two or more modes of MA are present.

If MD's (f) and MS (e) coexist, the portion f of f accommodated by MD's

satisfies (to first order) for quadratic symmetry the relationss’g’lo

f=Pf +Qe, ec=|el, )

where (i) P =Q =1 for a thin layer on a thick substrate (ii) P =cos}, Q=1
when the MD is inefficient; A heing the inclination of the Burgers vector
to the interface and (iii) P =1, Q =1 +1'“1R-1 when A and B are both thin
with r =ha/hb’ R~ ua/ub and e = IEbl. For different symmetries MS, MD's
and a MV ma;héoexist.7 Our main aim is to report on calculations of
critical misfit fc when a monolayer (ML) is subecritical (f =0) and the
critical thickness hc at which such a system becomes critical (f # 0).

We need to define the physical principles governing calculations of fc
and hc’ clearly, Consider a growing epilayer which started as a coherent
(f =0) ML. The acquisition of MD's is suhjected to a hierarchy of energy
barriers U both in creation and motion (Peierls). The acquisition is .
driven by the free energy gradients (8A), aided by thermal energy
(kTs, Ts = substrate T) and proceéds towards the free energy (A) minimum

defining the equilibrium, i.e.
min, = A ® E, (3)

where E is the energy. The observed configuration depends on AA,

kTs, U, the deposition rate Rdep and any waiting time. Furthermore, the
critical parameters will also depend on the growth mode: island growth,
ML-by~ML growth and Stranski-Krastanov (islands on top of ML-by—ML)}l-l3

Almost all theories model the AA and BB interaction in terms of

4,5

continuum elasticity (harmonic approximation)?’ Recently ab initio



calculations, using appropriate potentials, have been carried out too.
The periodic AB field (potential V(x,y)) has been cast either in the
Volterra models, which invokes crystal dislocations to accommodate f, or
the Frenkel-Kontorowa (FK)2-4’7 model that expresses V(x,y) in terms of
a (truncated) Fourier series. Whereas the Volterra model has the
advantage of the mathematical simplicity the FK model allows for
adjusting the AB strength as needed. Furthermore, specific epitaxial
orientations are linked to specific Fourier terms7 as matching of A and B
wave vectors2 ("atomic row matching'), whereas the magnitude of the
relevant coefficient poses asan energetic measure of the tendency to the

realization of the specific epitaxy.

In the FK model the self energy EB of a MD between two thick

epicrystals is given by3

H_1CP

Ep = abz [1+8-(+85} - pwlesar + 82t - 282 (4a)
4m
2TT>\OC 1 ! - \)a 1 - \)b 1

B = , = + , c=z =(a+b) (4b
uabp X-: ua ub 2 )

where p is the MD spacing and the other symhols have evident meanings.
The Volterra model introduces a 'cut off radius R" such that for an

epilayer of thickness ha on a thick substrate5 the line energy of an EMD
becomes

Ab _ (P/2 when hy > p/2 (5)

Db .. R
E' = {2n(zx) + 1}; D = — R
D 7 (b ’ A ha when h, < p/2.

This expression must be modified when the MD's are inefficient or partial
and the Burgers vector b is essentially the ¢ in Eqs. (4). When p becomes

large (4) reduces to (5) but with smaller value of R. When the misfit is

partly accommodated by MS e the MS energy, which is of the form 4,5
_ Zua(l+va) -
E = Bh e? = —————- h_e® per unit area, (6)

e a‘a 1 -V, aa



for interfaces with quadratic symmetry, must be included.

We need criteria defining fé and hc. The criterion for the

equilibriu= MS Em (or MD density im) is definea by4’5
9E | 0= 3E for e=e , f=f* (7a)
e Bf m m

using eqs. (2)-(3). Furthermore, from 3E/3f = 0 we may infer that the

. . . 4,5,7
work done to introduce a MD vanishes, 1.e. that '™’

W=/ Fds =0, or F =0 when F constant; e = Em , f= £ (7b)

where, either F is the net force on a dislocation and ds its displacement,
or F is an applied force employed to introduce the dislocation and ds the
displacement of its "point" of action. The case F =0 applies when a MD
is generated from an existing (threading) dislocations. The conditions

for critical misfit fc (f =0) at given h and critical thickness hc at

given f may be written ass’9

¢(h,fc s£=0) =0 and ¢(hc,f;? =0)=0, (8)

where ¢ is one of the functions in eqs. (7). In the FK model the

., . . 4 .. evsqs
transition to incoherency is sharp . This gives credibility to

Ea(h,fc;e =f) = E (h,fc;f = f) 9)

9,10

as an approximate criterion for fc' This may however overestimate”’ fc

and hc by nearly 257, - -

Equilibrium considerations assume that MD's are freely available. In

general energy barriers of the form4

U=/ Fds; bar = barrier (10}

bar,

exist, where the integration is from bottom—-to-top of barrier. Typical



barriers are the nucleation and Peierls barriers?’la The barrier heights
are reduced by MS (Peach-Kohler) driving forces F_. A special case
e

. e .. . . — . 5
obtains when the opposing MD line tension FD is overcome by *_, i.e.
e

F=F -F =0, fore=f¢ (11)
D&

and MD's generate spontaneously without the aid of thermal energy kTs.

When U/kTg > 1 the barriers are completely prohibitive and the system will

remain almost indefinitely in a metastable configuration. When U S;kTs

the attainment of equilibrium takes time and the observed configuration

may differ significantly from equilibrium.

Equilibrium calculations of critical misfit and thickness
Consider the application of the equilibrium criteria (7) and (8) to
layerlike growth, Frank and van der Merwe4 did this for a one-dimensional
(1-D) FK model in which the AA (harmonic) and AB (sinusoidal) interaction
strengths were respectively embedded ina force of constant | and an overall
g1

amplitude W, They obtained the (ML) critical misfit and critical

thickness hc as (See eqs. (8))

fél) = 2/1%, , Qg = nbu(l)b/ZW ; n=1 for a ML, (12)
h, = ngb = 8W/n2u(1)bf2, (13)

where of u(l) and W in (12) and (13) stresses the importance of field

1
strengths; fé ) ~ 97 for an average case.

This calculation neglects strain in the substrate, the normal strain
gradient in the overlayer and the lateral Poisson (V) contraction. The

latter is easily taken care of yielding for quadratic symmetry the resultsl

u_hb?

f(l) - 2 22 = a h = 4(1-v)W (14)
2 - S 14 »

¢ T2 (1+V) I=vw ¢ nz(lw)uabzf2



where uy is now the shear modulus of A, This diminishes fil) from 9%
to about 7%. With different symmetries, as for (11!1) f.c.c./(110) b.c.c.
2,7,12,13

interfaces the misfits in two ortogonal directions are Jifferent

and a variety of MA modes coexists, Also for crystals, other than ML's,
2-D coherency is extremely rare, whereas 1-D coherency follows the same
pattern as for quadratic symmetry.

The first calculation to allow properly for relaxation in the substrate
and a strain gradient normal to the interface was done using the parabolic

(P) model and yielded the exact solution9

_ 1=y o dx _2(1-v)h
fc(h) T AT (1Y) !o o x+d(x,a)] ° @ = a
_ x(s?+cs—x-x?)+a(c+s) 2/ (1-2v) = sinh
P et e () o e
x(s =x")+a(s +cs+x-x c = coshx

for fc(h) or equivalently f(hc) in crystals with equal elastic constants.
With different elastic constants fc(h) has the same form but ¢ is vastly

more complicated.10 Matthews5 obtained using the Volterra model (eqs. (5)

and (6))
D h D hc
fc = -Z-B-H[ln('s) + 1], hC = 5Bf [Qn("b—) + 1] . ( . (16)

Equation (16) is inaccurate at small thicknesses where the "cut off"
approximation is poor and the precise AB field strength, which (16)
ignores, becomes important. It may be modified though to account for
inefficient and partial MD's,

Most systems exhibit Zsland growth (Volmer-Weber or Stranski-
Krastanov)ql1 This case was first addressed by Cabreral6 assuming a hemi-
spherical epitaxial island A of radius R on a thick substrate B and

equilibrium MS's € and & . For the critical misfit &, + & = f_,



while also p = 2R+. When =W =1y and a = a = a it follows, (to

first order) using the strain energy (log. term) in Eq. (4a) that
= 15(1 V) Z %_ 2 - b . M
fc(R) e Bin[ 2B (1+8%) 284}, B(R) = TR (17;

For given misfit f, Eq. (17) defines a critical size R,

Recently fc(h) has been calculated for a superlatticeg’lo using the

exactly solvable parabolic model in conjunction with the assumption that
the stack of layers remains plane:

U=v) U+ RO

_ dx
R = —— o, [ Tx=meeT (18)

where a(n) = 2(1-V)h/a and ¢(x) is a complicated function of elastic
constants and thicknesses, and r and R are defined in eqs. (2). By
criterion (8) this also defines a critical thickness h = hc. When the
layer thicknesses and elastic constants are respectively equal eq. (18)
simplifies greatly, hc/a varies approximately as f-K; K =1,22 compared
to K=2 in (14) and K=1 in (16). When h/a is small ESUP ~ED/Z where ED
relates to a single layer on a thick substrate, For thick layers,
E;up “’EDQ Furthermore fzuP = 4 fc and hzup & 4hc°

Matthews5 has calculated fc and hc for a thin epilayer on a thick
substrate using the (Volterra) force criterion in (7b) ;nd included the

line tension g, of a step formed concurrently at the free surface and the

force Y, needed for stacking fault formation:

Db (1-v cosza)[ln(hc/b)+1]+ cob sina

h =
c Bbf cos A~y /cos ’

(19)

A being the angle between the slip direction and the direction in the
interface normal to the line of intersection of the slip plane (S) and

the interface, o is the angle between the MD and its Burgers vector b



(applicable to partials) and ¢ is the angle between the free surface and
the normal to S.

MD's way also be generated by climb, Matthews5 calculated B for this
case invoking partial MD's and obtained, using the criterion (7b):

D 2n(h/b) +1] to,
¢ T Bf -YOZB cos o

’ (20)

h

where the * signs correspond to surfaces being created or annihilated by
climb and 0, is the surface free energy. This mechanism is dependent on

the availability of point defects.

Calculations of critical parameters (non-equilibrium)

We briefly consider quantities relevant to criticality under non-
equilibrium conditions: the activation barriers U (eq. (12)) to the
formation of MD's and their reduction by MS, the nucleation energy of MD
loops, surface (image) and Peierls barriers, and the dynamics of MS relief,
Frank and van der Merwe4 have first shown that in the FK model the barrier

to the injection of a MD at the free end of a coherent monolayer (ML) is
Ué]) = (Awlo/-n)[(]-lei)i -(m/2 - arcsin flo)flo] (21)

per atom row, (compare eqs. (10).

e
n

has a maximum value of awzoln ~ 9w

at f=0, diminishes to about 2W at the coherency instability fél)= 2/1r2o in
€D

eq. (12) and vanishes at fs

for a ML or h_ for a multilayer (analogy of

eq. (13)):

f:]) - 1/2, = wfél)lz; h = m*h_/4 = 2h_. (23)

whereafter MD's enter freely without thermal aid. In metals

W~0,2 -0.5eV. The misfit f:l) is about 147 wﬁich is reduced to about

112 if we use the more appropriate ML relations in eqs. (14).




Continuum theory predictsl7 that the nucleation energy of a MD
loop in the absence of MS is about 200 eV which completely rules out
the creatica cf such loops by thermal energy -lcne. The reduction of
Un was also been considered by Dodsonlé in the case of Si, He employed
an atomistic approach, using modified Tersoff potentials and obtained an
fs ~ 11%Z. This is significantly larger than the continuum prediction of
47 and equals exactly the 117 in (23), which is somewhat fortuitous.
More recently Tsao et, al.17 have considered the overcoming of
Peierls barriers and measured the MS relief in metastable SixGel_x
strained layers grown on (001) Ge substrates. They concluded that
strained layer breakdown is most directly correlated with (1) an excess
(driving) stress Z(FE - FD)/hb given hy

s o 2eu(1+v) _u(l-vcos’s) An(4h/b) .
exc 1 -v 2m(1 = V) h/b  °

e =f (24)

and (2) temperature, where a = 60° is the angle between the MD line and
its Burgers vector. Whereas Oaxe = 0 is still valid for equilibrium, in
the relevant metastable configuration, the energy barriers delay the
transition to equilibrium. At a temperature of 494°C MS relief becomes
observable when cexc/u & 0,024, Since in the derivation of O exc the MD's
are generated from threading dislocations the relevant barriers are

presumably the Peierls' barriers. The excess stress defines an excess

_ 1 . . . . 7
force Fexc =3 hboexc acting on the dislocation threading the overlayer%

and when displaced by x reduces the barrier U(x) to AU(x) = U(x) - xF

exc’
or to §U(x) = A(x)L/h for a critical segment length L jumping the barrier,
When |6U]max is small enough compared to the thermal energy KT_ the jump

frequency increases to the extent that MS relief becomes observable,



10

An interesting case of critical thickness concerns epilayers on
substrates of finite width. It makes use of a significant misfit strain
gradient (MSG) to accommodc*e the misfit f, Luryi and Suhir8 adopted a
rigid substrate of width 2% along the I-D misfit direction, a coherent
epilayer of the same width and an exponentially decaying strain field
with distance normal to the interface. They used a quasi-nucleation
criterion and showed that when % is small in comparison to the thickness
h, there is an effective thickness he smaller than h that characterizes
the limit of the strain field, i.e, that he ~ £ when h ® 2 and he &~ h
when £ > h. These considerations are qualitatively very significant
because they point towards a new mechanism of avoiding MD's.

Recently Dodson and Tsao18 investigated dislocation dynamics based on
a phenomenological model and assuming that (i) initially f =0, (ii) the
biaxial MS is relaxed by a MD network, (iii) the rate process mechanism
is the equisition of MD's, (iv) the motion of dislocations is driven by

a localized stress Tooc and opposed by energy barriers and (v) T can

foc

be expressed in terms of the residual mismatch f -f(t) - e(h), f(t) being
the (insufficient) density of MD's and e(h) the equilibrium MS at
thickness h. Starting with a nearly dislocation free coherent layer and

introducing a background dislocation density fo, the authors obtained the

governing equation

df(t)/dt = cu’l£, - E(¢r) - B2 (E(r) + £,), (25)

where C is a constant depending on temperature. This equation is claimed
to give a good description of the data for SiGe alloys on (100) Si
substrates using as model parameters C =30.] and Eu = 10_“. These
considerations constitute significant progress towards a successful

dynamical description of strain relief in non-equilibrium cases.



Concluding remarks

In the past, calculations of critical misfit and thickness had mainly
been car.:z2d out using equilibrium principles because of their cimplicity.
Recent observations have displayed a siéhificant_discrepancy between
theoretical and experimental values, particularly in semiconductors. This
phenomenon which has been mainly ascribed to non-equilibrium effects, has
become topical recently. This paper attempts to put the models and
physical principles of the predictions into perspective, Clearly the
space allowed is completely inadequate to do justice to this endeavour.

A more complete overview is in preparation.
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Descriptions of Low Energy Misfit Dislocation Structures using the Parabolic
Interaction Potential
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ABSTRACT

The need for and development of the parabolic model as a power series
approximation of the sinusoidal Frenkel-Kontorowa model, used to study low
energy misfit dislocation (MD) structures in epicrystals, is briefly discussed: Its
application to monolayers on thick substrates, thickening epilayers, superlattices
and structural ledges is outlined with special emphasis on critical misfit and
thickness in coherent to incoherent transitions. The "nucleation" of a MD by
climb from the free surface is calculated. The critical misfits obtained from (a)
the continuum (approximation) and exact solutions, using the parabolic model
and (b) the continuum solutions of the sinusoidal and parabolic models, are

compared and the differences of the various approaches assessed.



1. INTRODUCTIUN

Intercrystalline boundaries play an important role in the physical behavior
of crystalline systems, e.g. in plasticity and the electrical and optical properties
of epitaxial films. In the present considerations we are primarily interested in
the near interface atomic displacements resulting from the competing intralayer
and interlayer atomic interactions in an epitaxial bicrystal comprizing two
different crystals [1,2,3]. When the interlayer forces are moderately strong the
interfacial atoms are in fair registry everywhere except near line defects
constituting a sequence of misfit dislocations (MDs) which are said to
accommodate the misfit. One or both crystals may also be homogeneously
(misfit) strained to eliminate the disregistry completely and accordingly
accommodate the misfit by socalled misfit strain (MS). Because of the
mathematical complexities involved in a proper quantum mechanical description
of the competing forces, either ab initio models [4,5], using appropriate
interatomic potentials, or phenomenological descriptions [1,2,3], have been
employed in predicting interface and near interface atomic configurations.

Of interest here are the phenomenological models. Except for a few
anelastic [5] refinements investigators almost invariably assumed that the
relative intralayer atomic displacements are small enough for the harmonic
(elastic) approximation to be valid. For simplicity mostly isotropic elasticity is
usually adopted [1,2,3,7]. |

In modelling the interlayer atomic interaction provision is made for the
discrete atomic nature of the crystals by expressing the relevant forces as periodic

functions of the relative displacement (parallel to the interface) of atoms



opposing each other across the interface. There are two somewhat different
approaches: (a) the Volterra model [2] which assumes the atomic relative
displacement to be zero on one side of the dislocation and to be one atomic
spacing b on the other side and (b) the Frenkel Kontorowa (FK) model [8] (and
its generalizations and approximations) that expresses the periodic interaction
potential V in terms of a truncated Fourier series V(x). The truncation is
justified by the fact that the Fourier coefficients decay rapidly with harmonic
order [9].

In the original one—dimensional (1D) model Frenkel and Kontorowa

expressed the energy of their system as [8]

E=% {\(xp,y — X0 —2)2 + % V(xp) (1)
with

V(xa) = 4$V,[1—cos(2mxa /b)), (2a)

Xn = b(n+&,) = nb + Uy, (2b)

Equations (1) and (2) model one halfcrystal, simulating a monolayer (ML), in
terms of a linear chain of particles connected by elastic springs (harmonic forces)
of force constant A and natural length a and the other (a thick, effectively "rigid"
substrate of atomic spacing b) to be the source of the periodic potential V [1]. Its
overall amplitude V, is seen as a measuere of the interlayer interaction. The
integer n enumerates particles and potential troughs starting from a position of

(nearest) registry so that b¢, = U, represents the displacement of particle n from



trough n.
The parabolic reproduction of the FK model replaces the sinu§oidal

relation (1) by a sequence of parabolic arcs, for example [10,11]
V= 1Vt = mV,oU2/b2, blE| = U] <b/2, (3)

which are obtained by truncating the Taylor series of (2) at quadratic terms.
Hence the arcs in (2) osculate with the troughs of (1). If we assume that relation
(2) is a true representation of the interiayer interaction then (3) is an
approximation which is still acceptable [10,12] at U = ¢b/4 and poor towards the
boundaries U = *b/2, as may also be inferred from Fig. 1. In semiconductors in
which the crest of the potential V is believed to be fairly sharp as compared to
the troughs the approximation (2) is rather inadequate and it has been suggested
that the parabolic form (3) may be nearer to the truth [13].

The simple representation (2) has subsequently been extended to
two—dimensional (2D) potentials V(x,y) appropriate to 2D interfaces
characteristic of monolayers (MLs) [1,14], for example, and to linear interfaces
between thick epicrystal halves [7]. In the latter case it had been convenient to
represent the interaction in terms of an interfacial shear stress p,x(x) (shear force

per unit area) which, in the parabolic approximation [15], takes the form
Pax(x) = pU(x)/d, |U| < b/2 (4)

where d is the separation of the atomic planes on either side of the interface, x

and z are respectively parallel and normal to the interface and px an interfacial




shear modulus of magritude characteristic of the interlayer inicraction strength.
One may use either Eq. (2) or (3) to derive the equivalent of (4) and obtain by

comparison the relation
p/d = 272V, /b2s, (5)

where s is the interfacial surface area per atom. In any interface with quadratic
symmetry s = b2.

When the crystal hélves are different in thickness and/or elastic constants
the relative normal displacement W of the opposing atoms at the interface varies
along the interface. This induces a normal interfacial force which has been

modelled [13,15,16}, using Hookian relations, as
P22(x) = [2u/(1-2v)]W(x)/d, (6)

where v is a Poisson's ratio for the interface. In terms of an interaction
potential, (6) is also parabolic. Whereas in case (4) a nonlinear relation exists at
|U} = £b/2 when a MD is present, W in Eq. (6) will always be small enough for
the linear Hookian relation to apply.

Having described the background of the parabolic model it is now our
objective to briefly review the use of the parabolic model in describing low energy
misfit dislocation structures (LEMDSs). Of specific interest is the transition
from a coherent (C) interface, where the misfit f is fully accommodated by MS &

= {, to an incoherent (IC) interface with MD density f. When MDs and MS

coexist [2,13]



f=(ab)/bxf+|el. (7)

The C-IC transition is mathematically characterized by a change from f = 0 to
f#0.

The behavior of our system is governed by the law that all natural
processes carry thermodynamic systems towards equilibrium. The equilibrium
configuration is determined by minimization of the free energy which, in the case
of MDs; may be approximated by minimization of mechanical energy E [1-3].
The solutions thus obtained for the governing equations within the crystals,
which are normally in the form of partial differential equations, must satisfy
certain boundary conditions, for example, that the "upper" surface of an epitaxial
film on a thick substrate is a free surface. This implies that the forces that act
on the surface, and [1,3] accordingly the surface values of the corresponding
calculated stresses, vanish.

Apart from the suggestion that the parabolic model could be a better
representation of the interlayer interaction potential in semiconductors [13]. for
example, than a low order Fourier truncation, it enters piecewise linearly in the
governing equations making them exactly solvable. Although the need for exact
solutions was m(;st pressing in the case of thickening epilayers, the model has

been useful and even indenspensible in other cases.

2. APPLICATIONS



2.1. Monolayers: Ona—Dimensional Model

Origir;a.lly the 1D ‘FK model was introduced to simulate the plastic
behavior of crystals [8). It was subsequently applied to describe the
accommodation of misfit in epicrystals, in which misfit exists in one interfacial
direction only [1,7,17]. In certain interfaces the misfit may be so large in one
direction e.g. {111} fcc/{110} bcc interfaces [18], that the relevant misfit
accommodation approaches a misfit vernier (MV) with little effect on the atomic
arrangements in either crystal. The small misfit direction accordingly poses a 1D
MD problem. Minimization of (1), using (2b) and (3), yields the piecewise linear

governing equations [10,11]

€nut = 260 + €y = Hppital; 1[6a]] <4 (8)

where [€p] means that £, must be replaced by £, ® 1 if atom n enters the
parabolic domain of neighboring troughs n # 1. The disadvantage of the
parabolic approximation, as may be seen from (8}, is that the right hand side has
discontinuities at £, = +4, which is a mathematical complication.

Possibly the parabolic model was used for the first time [19] to support
results obtained by Frank and van der Merwe [1] using the 1D FK potential in
Eq. (2). In that case the governing equations were a series of second order
nonlinear difference equations which simplify in the continuum approrimation to

solvable Sine Gordon equations. Frank and van der Merwe obtained critical

misfits [1]



f(~=2'/x[0, fs = 1/’0, (9&)
G = Ab2/2V, (9b)

Below a misfit f = f; the equilibrium configuration of the chain is the one in
which it is misfit strained to coherency (a-b), but still needs an activation energy
for the introduction of MDs. Above f = fs the energy barrier vanishes and MDs
enter spontaneously. The question as to the extent to which the approximation
effects the predictions was investigated using a modified parabolic potential {19].
The modification was an improvement on the form (3) in that the lower part of
the potential was represented by the trough segment of (3) and towards the
crests at x = b/2 by segments of inverted parabolas. This eliminated the
discontinuities. The modification of the governing equation (8) contains linear
pieces of positive and negative slope on the right hand side and connect smoothly.
The investigation using the modified parabolic potential showed that the effect
on the predicted critical values was not serious.

Of interest is that, instead of the critical misfits f. and fs of Eqs. (9). the

authors obtained for the parabolic model the results

’ 72 2 S ¢/
fe = grmyamyt 7ty > e =g 50y (10a)
fi=H0+ 9t 4+, =21 (10b)
s=5ll + 79" +ardy, s =77, -

when expressed in terms of £,. The values f “and f correspond to exact and
continuum (approximate) solutions, respectively. It is seen that f; > f; = {3

whereas f; < f;. Both f; and f; are greater than f; = 2/7ly; fc only when £, > 2.



Frank and van der Merwe [1] showed that 7/, = 7 in average cases in which intra—
and interlayer forces are the same. It may thus be surmused that the regime ¢, >
2 covers most common cases. Also if we take conveniently £, = 27 it follows that

fé differs from f; by only about 3% whereas the difference between f; and f; is

about 25%.

2.2. Adsorbed Monolayers: 2D Models

According to the Frank—van der Merwe (FVDM) theory an adsorbed (2D)
ML grows coherently (incoherently) on a crystalline substrate under
quasi—equilibrium conditions when the misfit falls below (exceeds) a critical
value which is somewhat below the value f. in Eq. (9a) because of Poisson
phenomenon [1,14].  The coherent to incoherent (C-IC) transition is
accomplished by the introduction of MDs which may be of finite length and
terminate within the ML (see Fig. 2) [20]. The MD contains one more (less) ML
atomic row as compared to substrate potential troughs when a < b (a > b).
When the MD involves an extra atomic row the MD grow (shrink) by the capture
(ejection) of atoms from the surface (row). Shrinkage by the absorption of
vacancies from the ML may also be invisaged. Phase transitions in adsorbed
MLs had become a subject of intensive theoretical and experimental study. Not
only had these studies generalized the theory to account for temperature effects
but they had also introduced new nomenclature: solitons, discommensurations,
etc. for MDs and (Taylor) dislocations [20,21] for the atomic configuration within

the ML where the MD terminates. This configuration differs from that of a
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conventional dislocation in that the atomic positions within the ML rot only
depends on the atomic interaction within the ML but also on the modulating
potential V(x,y) emanating from the substrate. Although this situation can be
modelled in terms of Fourier truncations the resulting governing equations could
not be solved. However when parabolic models are used instead for both the
soliton and the dislocation they become solvable [20] for the atomic
displacements in terms of Fourier transforms. Expectedly the analysis is
moderately complicated in this case. Different sets of difference equations, with a
variety of boundary conditions apply to different areas depicted in~ Fig. 2. Simplé
solutions had only been obtained in the continuum approximation in which
difference equations reduce to differential equations. Of particular interest is the
result that the interaction between the two (Taylor) dislocations terminating the
soliton (MD) falls off exponentially with separation, whereas it had previously
been assumed in theories of two—dimensional melting transitions in adlayers that

dislocation dipole unbinding follows a logarithmic dependence [21].

2.3. Thickening Epil ayers

One of the important problems that "evaded" an exact solution is the one
of LEMDSs at the interface between a thickening epilayer and its substrate. By
"exact" we mean a solution that satisfies the governing equation even though the
equation itself already involves a degree of approximation, as for example the

continuum approximation which reduces a set of difference equations to a single
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partial differential equation in the 1D FK model [1]. Exact solutions using
sinusoidal FK models exist for the extreme cases, namely a ML on a thick
(essentially rigid) substrate [1,14] and an epitaxial bicrystal consisting ;)f two
“infinitely" thick crystals [7]. When both crystals are thicker than half the MD
spacing the "infinite" solution is accurate to within 2% [15]. An extrapolation of
the ML solution to multilayers, already involves a nonneglegible error at two and
three fold layers. Attempts at interpolations between the ML case and the thick
. layer case had not been very reliable; the errors have not been calculated.

Matthews has adapted the Volterra model to study LEMDSs in growing

epilayers [2]. For a growing epilayer A on a thick substrate B the energy per unit

length of a MD is written as

R Kpkgh
Ep = Dbltog+1); D = [(1=vy Jug+(1=vglusl”
R={4p whenhA>§p : (11)
hA whenhA< ip.

R is a "cut off" radius accounting for cancelling of overlapping of strain fields. p
and h are respectively the MD spacing and layer thickness and g and v
respectively the shear modulus and Poisson's ratio. The constant term Db makes
provision for the core energy of the dislocation. By a proper choice of R
Matthews could handle epilayers of all thicknesses. However, the Volterra model
does not provide independently for the interfacial Bond strength between A and B
[3]. This is evidently important in epilayers of small multiplicity [13] as one may
deduce from the fact that V, appears in the relation (9) for f; and that V is not

necessarily determined by u A and Iy In thick epilayers the interfacial bond
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strength vanishes asymptotically fiom the results [3].

Exact solutions of the problem of a growing epilayer on a thick substrate
of a different crystal had previously been studied by various authors and more
recently in greater detail by van der Merwe and Jesser [13,16], using the
parabolic model in the form of Eq. (4). Since the crystals have different
thicknesses, provision is also made for a normal interface stress in the form of Eq.
(6). With the conventional assumption that the MDs are long and straight the
problem is one of plang strain that is most efficiently analysed in terms of an
Airy stress function ¥ satisfying a b.iha,rmonic‘ equation that can be solved in
terms of Fourier transforms [7,13]. The stresses are obtained from ¥ as simple
derivatives. = The Fourier transforms are selected to satisfy appropriate
periodicity and symmetry conditions for the film, a free top surface and surface
stresses (4) and (6) at the interface. The strains accordingly follow from Hooke's
law and the displacements U and W by integration. The periodicity, svmmetry
and boundary conditions yield a set of linear equations from which the Fourier
coefficients have been obtained. Thus the problem is solved in principle. By
energy minimization the equilibrium distribution of misfit between MS &, and
MDs f, as well as the critical misfit ., or equivalently critical thickness hc. are
obtained. For the critical misfit of an epilayer of thickness h having the same

elastic properties as the substrate, we have, for example [13]

[+

- dx - -v
fh) = 5(%7) fo AeFah B )

1 x(s2+cs-x—x2) + &h(c+s)?
¢(x,h) = 2 x(s2—x2) + Oh(s2+sc+x-x2)°
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_ 1=V _ 2(1-v)h
b=Tpa—2=—"4d .

s = sinhx , ¢ = coshx .

Supposing that a MD enters a coherent epilayer by climb from the free
surface, the question is: how does the energy of the epilayer system depends on
the distance ¢ of the MD from the free surface and on the layer thickness h?
Whéreas the enefgy per unit length of the MD increases as the MD recedes from
the free surface energy of coherency (misfit) strain AE & (per unit length of MD)
will be released. The energy of formation of a MD by climb, i.e. the change in

energy of the system per unit length of MD AE will thus be given by (see

Appendix)

z_gﬁf(—]f_%”)—”ﬁ+§%u(e), (13)

where

[ = [{ when{ < h
hwhen{>h

and I(f) = I(h) with b = ¢.
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The analytiral evaluation of Eq. (13) is difficult hecanse of the eomplexity
of the function ¢(x), however numerically it was possible to show that the

equation is very closely approximated, for the case of Poisson's ratio equal to

1/3, as
AE/(pac/47?) = 114 + 4 {n(¢/c) — 1672(¢[C)f. (14a)

The maximum energy AE*, which in this analysis is a "nucleation energy"

barrier to be overcome by the MD as it climbs to the interface, is given by the

expression

AE*/(uac/4m?) = 7.4 — 4 {n(472) (14b)
and occurs at the thickness £* where

t* =c/4nrAo. (14c¢)

This critical thickness for nucleation is related to the critical thickness for loss of

coherency, h¢ by
he = £*[2.85 + {n(h¢/c)]. (14d)

From the relation (14d) one sees that the critical thickness h is greater than
three times the critical thickness for nucleation £*. When the film thickness is

less than the critical thickness for nucleation of an MD then the energy per unit
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dislocation length always rises as :¢ approaches the intcrface and no eritical
thickness for nucleation exists. One could state this result another way. If a MD
exists at the interface when the film thickness is less than the critical thickness £*
then the MD is attracted to the surface and should be eliminated from the film.
The dependences of AE, —AE, and AED on ¢ are illustrated in Fig. 3.
Whereas AED increases monotonically (essentially logarithmically), —AE.
decreases linearly until { = h; thereafter it remains constant. AE rises at first to
a maximum value at thickness ¢*. Thereafter it decreases until { = h at which
point the slope changes discontinuously to a positive value characteristic of AED
at { = h, and AE, assumes a constant value AE¢(h). The value of thickness for

which AE vanishes is £ = h¢(f), the equilibrium thickness at misfit f.

2.4. Superlattices

The problem of predicting LEMDSs in epitaxial superlattices has
previously also be;:n dealt with by Matthews and Blakeslee using the Volterra
model as outlined in Eqs. (10) [22). Naturally this involves the same
shortcomings as mentioned in relation to the growing epilayer on a thick
substrate. The parabolic model had also been used beneficially in this case
(13,16). The analysis in this case differs from the "growing layer on a thick
substrate" in two important aspects: (i) both layers now participate in MS and

(ii) the boundary conditions are different. As to MS we have the relations

f=~f+e(1+r'RY); &= |ég],
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I‘A(1+VA)(1—VB)
I‘B(I'H’B)(I"VAT’

r=hA/hB,R= (15)

where the superlattice consists of alternating layers of crystals A and B of
thicknesses 2h A and 2hB and the other quantities in (15) have evident meanings.
The relations in (14) assume that no bending occurs. When the crystals have
(more or less) equal elastic constants, as is often the case, also their thicknesses
are the same and f = { + 28 (e=|e, |=|ég]) [13].

As to boundary conditions there are no free surfaces except the outer
boundaries. The problem of LEMDSs for the interior of the superlattice has been
analysed using the parabolic model. Apart from the relations (4) and (6) that
hold for the interlayer interaction field periodicity with a wavelength equal to the
MD spacing p exists. Additionaly the unit lying between the two midplanes of
neighboring layers A and B are constrained so that the normal displacement and
shear stresses vanish on these planes. When the elastic constants are equal the
condition of vanishing normal displacement may be replaced more simply by zero
normal stress on this plane. In this case of superlattices the problem of LEMDSs
could be solved for the equilibrium MS €, and MD density f,. For example for
the critical thickness nc = hB/ b of the layers of type B the authors obtained

o

(l--VB)p( 1+r 'R dx
|

Tr(140g)ip X[F o] (16)

f(’lc;l'aR) =

a= 2(1_1/)770 ’

where the function ¢(x) is somewhat more complicated than ¢(x) in Eq. (12).
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Although an analvtical expression for the integral could not be found it lends
itself to 1airly accurate approximations and the role of various parameters could
be investigated. For example, certain useful scaling relations could be obtained:
thus for R* = 1 = r it was shown that fe(m,Ry) = fe(m,Ry) where R = B2,

d=zp Al + #ﬁ‘ and vy = vp. The authors also showed that 5 ~ {-1'3 whereas 7,
~ f2? for the extrapolated Frank—van der Merwe theory [1] and 7. ~ f

(approximately) for the Volterra approach [22].

2.5. Structural Ledge Interfaces

An interesting LEMD related mechanism of misfit accommodation (MA)
occurs in solid—solid phase transformations where the introduction of a sequence
of atomic ledges of the same sign (down or up) effects a trade of the conventional
sequence of efficient MDs that accommodate the disregistry parallel to a plane
interface for: (i) interface terrace patches of zero average disregistry and (ii)
widely spaced MDs with Burgers vector normal to the interface to accommodate
the misfit that accumelates (stepwise at the ledges) over a number of patches
[23,24]. Each terrace commences with a maximum disregistry on one side which
decreases along the terrace to reach an equal but opposite value oh the other side.
In addition this disregistry is reduced by elastic relaxation due to the interlayver
interaction. Primarily a ledge effects a relative displacement of the atomic
paterns on either side of the interface (pattern advance), resetting the disregistry
to the same value as at the beginning of the terrace. It has been shown using the

parabolic model for disregistry as well as for the MDs; that this trading effects an
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energetic gain depending on the misfit f and pattern advance § at a ledge.
Energetically stepped interfaces become progressively more favorable than plane

interfaces as § increases and f decreases.

3. CONCLUDING REMARKS

A basic aspect of the theoretical study of LEMDSs at epitaxial interfaces
is the modelling of the periodic interfacial interaction. Frenkel and Kontorowa
modelled this by a Fourier series (sinusoidal function), truncated at second order
harmonics. The parabolic model is primarily a second degree Taylor series
approximation of the Frenkel-Kontorowa model and its extensions. Although it
is an acceptable approximation only over about one half of the period, it is
believed to constitute a better approximation to the short ranged covalent type
interfacial interaction in many semiconductors as compared to a low order
Fourier truncation. Also it compares favorably to the Volterra model that does
not provide independently for the interfacial bond strength; The main merit of
the parabolic model is that it linearizes the equations governing the atomic
arrangements, (resulting from the intralayer and interlayer interactions) to
render the equations solvable. The model had been used to obtain useful exact
solutions for the following problems: (i) in the linear chain. to assess the
discrepancies between critical misfits predicted by (a) the continuum FK and
parabolic models and (b) the continuum and discrete parabolic models; (ii) the

nucleation and energetics of a MD that climbs from the free surface; (iii) the

critical thickness (and misfit) in (a) an epilayer on a thick substrate and (b) a
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superlattice and (iv) the erergetics of structural ledges ia solid—solid phase
transformations. Clearly the parabolic model had been useful. It is foreseen that

it will continue to be useful in analytical studies of interfaces.
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APPENDIX: ENERGY OF FORMATION OF A MD

Equation (29) of ref. 13, when written in terms of the MSs & and €&y for

an epilayer on a thick substrate, becomes



{ (52 &2 2 ovic
By = (T)aleh 8 + 28],

where c is the reference lattice spacing [7). The misfit stress pxx which may be

written as 8Ee/ O({éx), accordingly becomes

Pxx = 2u(1+0)f/(1-1)

in the coherent & = f configuration of an interface with quadratic symmetry é; =

€y = & The work done per unit length of MD by pxx when the MD climbs to a

depth ¢ below the free surface is accordingly
—AE, = —pxxfa = —2ualf(1+v)/(1-v) (A1)
The work done per unit MD length to form a MD at a depth ¢ against the

linear stress pxx emanating from the MD (pxx may be obtained from Eqs. (14)

and (A8) of ref. 13) is given by

{
17./(') Pxx(0,2)adz .

This is nothing but the energy per unit length of MD and may be obtained from
Eqs. (30) and (A8) of ref. 13 as

. uc
AED = {im ﬁ%ﬁpfp ,
p-®
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.00
= 1 2 = xd/(1—
D= Z_ | TmEae 4 = /e

where ¢(x) has been defined in Eqgs. (13). If we write

x=2;)r—a'tn , dx=2%adn;dn=1

and let p - o we obtain the result in Eqs. (13).

(A2)
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FIGURE CAPTIONS

Fig. 1. Comparison of the sinusoidal (Eq. (2a)) and parabolic (Eq. 3) potential

representations; curves A and B respectively.

Fig. 2. Monolayer (ML) configuration with a MD of finite length (between ML

and substrate) terminating with Taylor dislocations (within the ML) at A and B.

Fig. 3. Graph of the energy per unit length of MD (see Eqs. (13) and (14)) in
units of pac/472 plotted against depth in units of £/c. The curves illustrate the
energetics of a MD that is formed at the free surface and climbs to a depth ¢ in
an epilayer of thickness h on a thick substrate. Curves A, B, C represent
respectively the work (AED) done in forming the MD in a strain free overlayer, B
the work (AEe) gained from the MS (Peach Koehler) stresses and C the resultant
energy of formation AE of the MD. The nucleation parameters £* and AE* have

-~

evident meanings. The figure is drawn for f = 0.001, h = 260c and h, = 207c.
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THE PHYSICAL FOUNDATIONS OF CRITICAL PARAMETER
CALCULATIONS IN EPITAXY

Jan H van der Merwe and W A Jesser _

Physics Department, University of Pretoria, Pretoria 0002
Republic of South Africa

The critical misfit fc and critical thickness A. at
which an epitaxial bicrystal undergoes a coherent to
incoherent (C- IC) transition are of great
importance. = The purpose of this paper is to
reconcile the conditions (quasi- equilibrium‘
non- equilibrium) under which growth occurs wit
the physical bases of the theoretical predictions of
the critical parameters. Because of the existence of
energy barriers to the acquisition of the MDs, which
are needed for the transition, it is inevitable that
some data will reflect a time lag between growth
and equilibration. @ The speeding up of the
equilibration process by the barrier height reducing
Peach- Koehler MS forces is highlighted. Criteria
for predicting critical parameters are set up and the
phenomenological (Frenkel- Kontorowa and
Volterra) and ab initio models used in calculating
these parameters are explained and appraised.
Examples, demonstrating calculations and their
correlation with empirical data in each category,
are briefly described.

INTRODUCTION

The transition of an epitaxial bicrystal, A on B, from registry (coherency) at
the interface to disregistry (incoherency) is of great fundamental and
technological importance. This transition, which will be referred to as the C- IC
transition, has recently become topical again (1- 4). It is therefore vital that the
principles and models used to predict the critical thickness k (or misfit f¢) at
which the transition occurs, be clearly understood and their reliability be
assessed, theoretically and experimentally (5,6).

The misfit between A and B is most simply defined for interfaces with
rectangular lattice symmetry as (4)

fi=(ei=bi)/di; i=13y, (1)



where the value of d; is between a; and b; and depends primarily on the relative
thicknesses hA and hB, When the interfacial symmetries are different, as for

glll} fec/{110} bee interfaces (8) specification of f needs mnre care. Recently
raun (9) has intreduced a powerful description of the interface geometry
(including misfit) in terms of reciprocal lattice vectors.

Of the various modes of misfit accommodation (MA) illustrated in Fig. 1 (5,6)

we shall limit ourselves mainly to (i) misfit (homogeneous) strain (MS = &), (ii)
misfit dislocations (MDs of density f) which may be efficient (EMDs) or
inefficient (IMDs) when their Burgers vector is inclined to the interface or even
split into partials and (iii) a misfit vernier (MV) when the misfit is large and/or
the interfacial bonding small so that the periodic strains associated with MDs
practically vanish. An interesting atomic configuration of MA, referred to as a
misfit- Taylor dislocation (MTDi (10) occurs in ultrathin overlayers of one ML
or less. The C- IC transition may namely be realized by the nucleation of a finite
segment of MD at the coherent interface and its subsequent growth by a zip- like
mechanism effected by the consecutive inclusion (or ejection) of adatoms until
the MD reaches a boundary edge of the overlayer. In the finite segment stage
the configuration is equivalent to an extra (or missing) row of overlayer atoms
terminating within the overlayer sheet. This constitutes a "Taylor" dislocation
within the overlayer sheet and hence the name MTD for this combination of
dislocations. MTDs may be operative at the C- IC transition in MLs. Two more
forms of MA, namely, "ruptures" and distortions" will conveniently be
introduced at a later stage. Misfit curvature (MC) and misfit strain gradient
(MSG) modes of MA (5,6) also exist but will be ignored below.

When the misfit in a given direction is jointly accommodated by MDs and MS
we have approximately

f=7+#% &=]g,], A thin (11) | (2a)
hopa(1-v,)

_ . s _ BB " " :

f=F+Pe E=|gl, P=1+ R (2b)

where Eq. (2b) applies to layers with arbitrary thicknesses 2hA and 2hB, for a

system that is constrained not to bend (122}. If the temperature at which
measurements are made differs from the growth temperature the thermal strains
may be different in A and B and must be taken into account. In technology
thermal strains are often matched (approximately) in accordance with Vegards
Law by selecting suitable alloy compositions (13).

BASIC CONSIDERATIONS

The growth of epitaxial bicrystals involves both the dynamics of adatom
surface migration and of the acquisition of MDs. Both processes require the
overcoming of characteristic energy barriers of which the migration activation
barriers Q are typically between 0.5 and 1.0 eV in metal surfaces with closest



packing (14). The energy barriers Ua. opposing the acquisition of MDs, form a
hierarciy with a maximum near 200 eV for the nucleation of a MD loop in a
perfect 3D crystal, down to a fraction of an electron volt per atom length of MD
for overcoming the Peierls barrier to glide (11). Whereas the overcoming of the
furmer by thermal energy is completely pichibitive, the latter may be reduced by
Peach- Koehler (MS) forces $5,6) to within the range (< 30 kT) of thermal
activation for a finite length of MD, and may even be reduced to zero if the MS is
large enough. The driving forces (5,6,11) for the abovementioned processes -
adatom migration and MD acquisition - are the free energy gradients AA. These
forces vanish when the equilibrium configuration is realizeéT at minimum (free)

energy A :
A = min.  F = mechanical energy. (3)

The approximation A ~ E, applies to MDs which form regular arrays in an
otherwise perfect crystal. It is exactly valid only at absolute zero. The majority
of past calculations have been based on (11) the equilibrium principle in Eq. (3) .
Non- equilibrium calculations are of mostly of recent origin and represent
attempts at (i) calculating activation energies (15), (ii) at establishing the
reduction of such barriers by Peach- Koehler forces (16) and (iii) at describing
the dynamics of MS relief by the introduction of MDs (17).

An aspect which is of great significance in the considerations below is the
growth mode (18). For the clear exposition of the basics of our considerations we
may retrict ourselves to the growth of overlayers of uniform thickness as in
ML- by- ML growth. In quasi- equilibrium growth this requires the
adatom- substrate (A-S) bonding to be strong in comparison with
adatom- adatom (A- A) bonding. Relatively strong A- A bonding induces island
growth at quasi- equilibrium, but may be coerced (19,20; into layerlike growth by
an appropriately high supersaturation (non- equilibrium) so that single atoms are
super critical nuclei and have sufficient time and mobility to move into a local
(crystalline) stable position. This is a technologically important case.

MODELS

The minimization procedures, involved in the application of the governin
condition (3), can be carried out either through ab initio or phenomenologi
model calculations (5,6). In the former the minimization proceeds directly by
Monte Carlo or other methods using appropriate interatomic potentials (151). In
the phenomenological models (11,21,22) the most relevant features of the
epitaxial system are at first modelled phenomenologically for use in deriving
energy expressions that can be minimized with respect to the relevant variants.
Whereas the ab initio models are quantatively more accurate, depending on the
reliability of the potentials employed, the phenomenological models have greater
generality and wider predictive powers.

The phenomenological models can be broadly classified according to the
representation of the interfacial (A- B) interaction in: (a) the Volterra model (11)
with an interfacial registry constraint (except at the dislocation line singularity),
and (b) the Frenkel- Kontorowa (FK) model (20-23) in which the A-B
interaction is represented by a periodic potential V of wave length d lying



between a and b as in Eq. (1). In the original 1D FK model (21,23) consisting of
single (ML) chain of particles on a rigid (thick) substrate (see Fig. 2)

V(z) =4 Vo[l-cos(2xz/b)], d=b. (4)

Vo may be linked (8) to the adatom migration barrier Q and the desorption
energy Eges (A- B bond strength) by

Q = gVo = KEges . (5)

The factors ¢ and x depend on the dimensionality, geometry, and bond type and
strength. In Eq. (4) g= 1.

The form g&) of V constitutes a 1D truncated Fourier series which may be
extended to 2D (8,9,20) in the interface between a ML and a thick substrate or to
a "linear" interface with 1D misfit between two thick crystals, as in the
generalized Peierls- Nabarro model (22). The truncation is justified by the fact
that the Fourier coefficients C; decay rapidly with harmonic order (24). A
significant property of the Fourier description is that each Fourier term defines
an epitaxial orientation and geometry in which the magnitude of the
corresponding coefficient is a measure of the tendency towards realization of that

orientation (8,9).

The potential in Eq. (4) degenerates into the parabolic potential (25,26)

- - a sequence of parabolic arcs - - when Taylor- developed and truncated at
lowest (2 degree ) powers:
V=140222Vo2 , |z| <4b. (6)

The A- A and B- B interactions in both the Volterra and FK (11,21,23)
models have been modelled in terms of the nearest- neighbor isotropic harmonic
(linear elasticity) approximation. More recently this has been extended to
anisotropic elasticity ?9), nearest- neighbor anharmonicy (Fig. 3), (27) and to the
case where the bulk structure of the overlayer has a "nearby" metastable phase
that can be reached by a homogeneous strain (MS) (28,29). In the latter two
cases the point(s) of inflection where the pair potential and free energy of the
initial structure mes unstable, has dramatic consequences. In the former
case this leads to additional modes of MA “ruptures" in case of strong A- B
bonding in combination with positive misfit or to "distortions" at negative
misfit. In both cases this occurs because the (nearest- neighbor) bonds become
streched beyond the point of inflection. While the "rupture" may be seen as a
degenerated MD, the "distortion" represents a stretched bond that separates
overlayer segments of close registry with the substrate. The overlayer segments
represent dimer, trimer.... groupings, depending on the magnitude of the misfit.

It is proper at this point, to record some expressions for the energies as
calculated for the simplest case of isotropic modelling. Since the MS energy E‘_3

and the energy E‘;) per unit length of MD in a sequence of regularly spaced (p)
MDs are additive, we may specify them separately:



E%A) = BAhAEZ per unit area for A, (7a)
B, =2p,(14v,)/(1-v,), (7b)

as introduced by Matthews (11) and by Jesser and Kuhlmann- Wilsdorf (30),

B = (u,gcp/AR)[1+5-(1+62) -pen{28(1+52)} -2p2) ], (8a)
ﬂ o 27/\Qd 1 1- VA + I- VB (sb)

b’ X B, by

in the FK model (22,25) (for h,,h, 2 {p) and

E = Db{tn(R/b) + 1}, D =MXpb2x, d=1b (9a)
. ip when hA >4p ‘ (9b)
hA when hA <ip

in the Volterra model (11). In the foregoing s and v are respectively the shear
modulus and Poisson's ratio, the subscripts A and B have evident meanings, and
R is referred to as the "cut off" radius. Note that the interfacial shear modulus
Byp measuring the strength of interfacial interaction, is absent in the Volterra

model. It is of interest that the expression (8a) reduces to the form 393) in the
limit of large p, with R & p/10 rather than 4p. Furthermore, the relations (8)

and (9) (relating to zero MS &) may be adapted for nonzero MS simply by

replacing d and p by d and p with f = d/p, where the bar designates quantities in
a configuration with MS. For purposes of energy minimization we need
expressions for the total energy per unit area of interface:

E=E + E = E(h,,h J,f or &) (10)
E = (;';yEI')‘X’ + i;xE'")‘y’)/ﬁxﬁy per unit area (11a)
= 2E‘I')/ p for quadratic symmetry (px=py=p). (11b)

Equations (11) relate to cross grids of MDs in which the crossing energy of MDs
may be neglected (22). EJ™’ is the energy per unit length of a MD in a sequence

of MDs spaced at distances px along the x- axis.

U,



CRITERIA
Because of its greater analytical simplicity we adopt a criterion for locating
ciiicality (5,6,11), the limiting operation
f-0 (equivalently & - f) (12)

defining the inverse (IC- C) of the C- IC transition. Using relations (3) and (10)
we accordingly obtain the minimization equations

0=%E- g}ﬁ for (]) = (¢a]n) - (13a)

The relation 0E/8f = 0 in (13a) is equivalent to requiring that the work W
needed to introduce an additional MD vanishes:

W= [Fds=0 at (]) = (2,fa). : (13b)

In the relation (13b) F is either an external force on the "free" surface that is
used to introduce the dislocation and ds an element of displacement of the surface
(21) or F is the resulting integrated force on an existing TD (threading
dislocation) (11) that glides to lay the MD in the interface and ds in the element
of displacement of the TD. When Fis constant Eq. (13b) is satisfied by

0=F=FE-F

D’ (13c)

where FE is the MS (Peach- Koehler) force on the TD and FD the line tension of
the MD being laid in the interface.

By combining the criticality criterion (12) with one of the equilibrium
conditions (13) we obtain the equations (5,6)
®(h,fe;f =0) =0and ®(h,f,f =0) =0 (14)

defining respectively the critical misfit fc and the critical thickness k.. @ is the
corresponding function in Egs. (13).

The fact that in the 1D FK model the density f of MD rises abruptly and
closes rapidly in on f at the C- IC transition was taken as ground to introduce

the approximation (25)
Ey(hfeie = ) % By (h.fi] = J) (15)

However, this equation overestimates (12) f. by up to 30%.

The adoption of equilibrium criteria implies that MD are freely available,



which they are not because of the existence of energy barriers (5,6,11). In
analogy to (13b) the energy barriers to nucleation and motion may be obtained

by integration as

Uac = bfrds. (16)

When reduced by Peach- Koehler forces to about 30 kT and less, the barriers can
be overcome by thermal fluctuations, given enough time. When reduced to zero

U=0 (17)

the nucleation or motion is spontaneous. In the sections below we briefly
describe calculations of fo and hc with the view of illustrating the foregoing
considerations. The illustrations are not exhaustive. Equilibrium predictions
using Eq. (13c) will be referred to as force criteria, and energy criteria otherwise
(5,6). When applicable force criteria are superior in simplicity.

EQUILIBRIUM CALCULATIONS

Although the Frank and van der Merwe theory (21) based on the 1D FK
model, lacks accuracy when applied to real systems, it has the merits of
simplicity and capability of making predictions about most of the features of

present interest: a critical misfit

2 (1)
((:l) =m, 18=EL5V:2—,' n=lforaML, (18)
obtained using either (13a) or (13b) and a critical thickness (see Eq. (14))

RED = nea = 8 Voa/x2ut V) PP f2 (19)

In these equations the superscript (1) designates 1D FK model. u‘!’ is the force
constant of the springs modelling the harmonic forces (Fig. 2). Accordingly the
ratio £o is a measure of the relative strength of the competing interactions; as

expressed by 4 and V,. The authors estimated that f¢!’~9% and that f¢V
decreases ix:)going to a 2D quadratic model to f£2’ =7%, due to the Poisson effect
(31) in a model with a 2D quadratic interface.

In 2D interfaces of the kind {110} fcc/{110} bcc (8,32) the misfits fx and fy
differ greatly and are most suitably expressed in terms of the ratio

r= ann/bnn (20)
of nearest- neighbor distances ap, and dan. Aspects of great significance in the

Fourier description for these cases are (8,9): (i) that minima of interfacial energy
exist for atomic (ideal- epitaxial) configurations in which sequences of atomic



rows on either side of the interface come into 1D registry (coherency, i.e. wave
vectors on either side of the interface match), (ii) that the matching and depth
are determined by the wavelength of the Fourier term and the magnitude of its
wrilicient respectively, (iii) that the deptir of the minimum is a measure of the
epitaxial tendency of the related epitoxial configuration (dimensicnally anc
orientationally) and accordingly provides the driving force for MS towards
coherency, and (iv) the depths are additive when 2D registry is attained. "Phase
diagrams" defining the critical values ry¢, ryc and rc have been constructed (8,9).
In these, in which rx. and eréc mark (19,20,21) 1D coherency breakdown the

critical thickness is also defined approximately as in Eq. (19).

The main consequence of including anharmonicity (27) is that the critical
parameter values branch into two: the lower branch for positive natural misfit
(coherent overlayer compressed) and upper one for negative natural misfit. The
magnitudes of the gaps depend on the details of anharmonicity and the misfit in
relation to the point of inflection of the nearest- neighbor (nn) pair interaction.
The "rupture" and "distortion modes of MA obtain when the nn bond is
stretched beyond its theoretical strength (see Eqs. 1(f) and 3(a)).

An important generalization of the foregoing is the one in which there exists a
structural transition of the crystal to a nearby metastable phase (28,29) that can

be reached by homogeneous (misfit) strain e, for example, the tetragonal
distortion of a bcc phase into a metastable fcc phase. There exist critical
parameters for both the stable and metastable configurations as well as two
points of inflection of the free energy vs strain curve. If the critical misfit in the
stable ML configuration exceeds the first point of inflection and the natural
misfit closely matches the tetragonal strain corresponding to the metastable
configuration, the "critical" thickness- (thickness to which the metastable
configuration persists) will be very much higher than would be expected on basis
of the harmonic (approximation) calculation, assuming that the existing misfit be
accommodated by MS (referred to the stable phase) alone.

The model on which Eq. (19) (and its 2D extension) for the critical thickness
is based, suffers from the deficiencies as listed above. Equally important
deficiencies are that the strain gradients in the overlayer normal to the interface,
have been neglected (8,9,19,20). Previous attempts at including these have all
been approximate. Ezact solutions (12,26) had only been obtained by using a
parabolic (approximate) potential of the form in Eq. (6). The resultin
expressions are complicated. For the case of a single multilayer on a thi
substrate (both isotropic and with equal elastic moduli 4 and v, including the
interface) the critical misfit is given by (26)

1- *_4d 2(1-v)h
fc(h) = 47r(lll+u)./; z[z+a£(z,a77’ afh) = aV ’ (21)

where A = hA and ¢ is a complicated function of z and a, that increases in

complication when the moduli are different. The Volterra approach instead
yields (11) the results (see Egs. (7), (9), (13))




fe(h) = sPRftn(h/b)+1], he = gBitn(he/b) + 1] (22

These are evidently simpler than Eq. (21) to analyse, but are rather inaccurate at
small thicknesses because of the approximations involved in Egs. (9). Note that
in Eq. (22) (and also in (24) below) h = b, falls in the class A, < {p of Eq. (9b).

The parabolic model has also been used to obtain (exact solutions) critical
parameters (12) e.g. for a superlattice obtained by stacking A and B layers in
alternating succession, giving

(1-v_)Pu,. .o d
fe(hy) = gz (1111/B )Z: _f; :[zm(lzzB TB(z)]” (23)

where P is defined in Eq. (2b), a(hB) = 2(1- VAB)hB/d and ® is a complicated

function of elastic constants and thicknesses, which simplifies greatly when these
quantities are respectively equal. Of interest is that hc/d varies approximately as
S with k ~ 1.22 as compared to x = 2 in Eq. (19) and x ~ 1 in Eq. (22). Energy
criteria were also used in conjunction with the relations (7) and ?8) to calculate
approximate values for (i) the critical thickness in an epitaxial bicrystal of two
equally thick halfcrystals (33) and (ii) the critical size R. of a hemispherical
island on an extended 3D substrate crystal with similar elastic constants (34).
The results in (i) correlated excellently with the observed critical thickness in
PbS/PbSe epitaxial bilayers (35). The results in (ii) were qualitatively correct

(34)

The' power of the force criterion in Eq. (13) (combined with the Volterra
model) to handle rather complicated cases is demonstrated by the derivation of
the critical layer thickness (11)

he = Db(1-vecos?a)[ln (h./b)+1] + apb sin a (24)
= Bbfcos A - v9/cos ® ,

in which the C- IC transition was accomplished by imperfect partial dislocations.
In relation (24) X is the angle between the slip direction and the interfacial
direction which is normal to tie line of intersection of the slip plane (S) and the
interface, a is the angle between the line of the mixed MD and its Burgers vector,

and & is the angle between the unit vector @, normal to S and the line of
intersection of the free surface and a plane which is normal to the free surface and

contains n. Also, 7o and oo are respectively the stacking fault energy and the
surface free energy of the overlayer surface where the gliding TD traces a step of
height b-sin a. A relation analogous to (24) can be written down for a MD that
is generated by climb (11). The force criterion was also applied to superlattices
by Hirth and Evans (36) and to multilayers, (allowing for bending) by Bokii and
Kuznetsov (37) with satisfactory results.



NON- EQUILIBRIUM CALCULATIONS

We have classified as non equilibrium (5,6) all calculations (i) of energy
bairiers to the acquisition (nucleaiion a> well as motion) of MDs, (i1} of barriev::
reduction and elimination by Peach- Koshier forces and (iii) of the dynamics
the acquisition processes, e.g. dynamics of MS relief.

The Frank- van der Merwe (21) analysis of the 1D FK model is also ver
powerful in illustrating non- equilibrium considerations, particularly features (i{
and ?i) listed above. The authors considered the introduction (nucleation) of a
MD trom the free end of of the chain by displacing the endpoint by an amount
aé, obtaining for a coherent layer U(¢,f) and Uysc(f

U(E,f) = (2Volo/x)[(cosxbo-bicosal)+ flo(xEo—x€)+26), (25a)
Use(f) = (4Volo/m)[(1-8)* - floarccos(fto)], (25b)

where 6,0 = 1,0 and 6, = -1,1 when € < 1 and £ > 1 respectively. The
displacement @€y of the free end is defined by )

sin Ifo = flo. (26)
A MD is created when the endpoint is displaced from the stable equilibrium
position § = £ to the nearest stable equilibrium position £ = 1+§,. When f=0
it follows from Eq. (26) that § = 0, defining (see Eq. (25a)) the nucleation
barrier at zero misfit as

U(€,0) = (2Volo/x)(1- cosxg) . (27)

The residual part of U(,f) constitutes the reduction of the barrier by the
Peach- Koehler MS forces. These considerations are illustrated in Fig. 4.
Though Fig. 4 corresponds to a misfit f = f¢ (= equilibrium critical misfit 2/xfp)
the acquisition of MDs is still confronted with a nucleation energy barrier.
Curves A, B and C display respectively the natural barrier U(€,0), the details of
the reduction of the barrier by the Peach- Koehler forces and the net barrier
U(&,fc). The barrier height attains the values 4 Wep/x, 1.6 Volo/r (approx.) and
0 when f = 0, fc and fs respectively. At

fs == 4xft) or hs = irhc, (28)

the barrier vanishes and MDs enter spontaneously (without thermal aid). For
metals Volo/7 i3 of the order of 1.0 eV so that even at f = f. the activation
energy barrier is still about 1.0 eV per atom length of MD. The nucleation
barrier for a finite (critical) len%th of MD may thus still be above the common
thermal threshold of about 30kT. It thus seems likely that "easy" sources of
MDs are normally needed for the C-IC transition, for example threading
dislocations. The energy barriers to the nucleation of MDs at the crystal surface
using continuum theory and in the interior of a crystal with MS, using ab initio
flﬁ) calculations had also been carried out with equivalent conclusions. The
oregoing considerations are helpful in interpreting recent results obtained by



Tsao et al (16) regarding MS relief in SixGe,-x strained layers grown on (001) Ge
substrates. = The authors have compared the components F‘.2 par of the

Peach- Koehler MS and the dislocation (presumably TDs) line tension FD par

forces with the observed MS relief and concivded that "metastable strained layer
breakdown is most directly correlated with (i) an excess stress ' .
Toge = 2(Fé, par™ FD, P or//hb and (ii) absolute temperature T"'. When written

as an excess force

Fepe= Fé,par’ FD,par

(29)

the result represents the non- equilibrium (F # 0) equivalent of relation (13c) and
may be correlated with the reduction of the activation barrier as described by
Eqgs. $25a) and (25b), and displayed in Fig. 4. Although Eqgs. (29) and (25), refer
to ditferent cases, the former to the motion of a %‘D and the latter to the
nucleation of a MD, the principles involved are the same. The relation Fexc = 0
still describes equilibrium as in Eq. (13c). When Fexc # 0, the related barriers
delay MS relief which only begins to occur with an observable rate at an excess
stress 7Texc/p » 0.024 that has reduced the Peierls barrier of a critical length of

TD to within the thermal threshold at 494°C.

A very significant mechanism of reducing the energy barrier to the acquisition
of MDs, and to tailoring them, has been discovered by Fischer et al 339) for the
growth of GaAs on (10(5 Si substrates. The authors had cut the (100) Si surface
off axis (tilted optimally by about 40 towards [001]) so that the exposed Si

surface forms a 2D staircase with ledges along [011] and [011]. The ledges
apparently facilitate the recruitment of substrate dislocations that terminate at
the Si surface, drawing them into the ledges where they become fairly tightly
bound EMD:s that are prevented from threading the GaAs overlayer.

Dodson and Tsao (17) have also analysed the dynamics of MD acquisition
using a phenomenological model and making various assumptions of which the
most prominent one is that the dislocations are driven by a local stress 7joc that

can be expressed in terms of a residual mismatch f- f(t)- €(h), in which (h) is

the equilibrium MS at thickness h and the MD density f(t) at time ¢ falls short
in accommodating the residual mismatch. The authors derived the equation

df/dt = cu[f - J(t) - e P(T - Jo) (30)
for the dynamics of MS relief; C being a constant and fo a background dislocation
density. Equation (30) gave a satisfactory description for the observed MS relief
of SiGe alloys on (100) Si substrates with values of C and fo given by C = 30.1

7 _ 104
and fo =10 ".



SUMMARY AND CONCLUSIONS

The main objectives of this paper have been (i) to correlate the principles,
specifically  equilibrium/non- equiiivrium  principles ou  which critical
misfit/critical thickness calculations are based, with the expeririental conditions,
under which they are measured, (ii) to describe the models used in the
calculations, (iii) to highlight the deficiencies, advantages and disadvantages of
the various approaches, and (iv) to briefly describe sample calculations, makin
no attempt to be exhaustive. We have given prominence to the prediction o
critical parameters in layer growth, an approach which we justified on the
grounds that either an overlayer has a natural tendency to grow in the
ML- by- ML mode because of strong adatom- substrate bonding and subsequent
homoepitaxial growth, or the overlayer can be coerced into growing layerlike by a
suitable supersaturation. In a C-IC transition the coherency breakdown is
accornplished by the acquisition of MDs, a process which is opposed and retarded
by a hierarchy of energy barriers, some of which naturally fall within the thermal
threshold and others which need be reduced, mainly by Peach- Koehler forces to
come within this threshold. It is therefore not suprising that measured critical
values are scattered over regimes covering the entire range from non- equilibrium
to equilibrium values. In metals where the Peierls barriers to dislocation glide
are believed to be relatively small many observations correlate with equilibrium
predictions whereas in semiconductors with strong localized covalent bonding the
barriers are high and many observations cannot be correlated with equilibrium
calculations (5,6,11). Because of their relative simplicity most calculations of the
past have been equilibriumwise. However, recently there had been a growing
interest and activity in the non- equilibrium regime. This is very timely
particularly because of the technological importance of semiconducting materials.

As to models, the phenomenological models of Volterra and of Frenkel and
Kontorowa have been the main goals of the past and will still play a significant
role in the future because of their simplicity and greater analytical predictive
power. Ab initio calculations, rightly aimed at greater accuracy, will be carried
out with increased frequency.

The Volterra model has the advantage of greater simplicity, particularly in
allowing for varying layer thickness, whereas the FK- model is more accurate at

small (1-2 MLs) thicknesses and in addition is very powerful in selecting
epitaxial orientations for which the coherency lock- in power is maximal.
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Fig. 1. Misfit accommodation modes: (a) misfit vernier, (b) misfit strain, (c)
efficient MD, (d) inefficient MD, (e) misfit- Taylor dislocation i.e. MD PQ
(between a monolayer ML and a substrate) ending in a Taylor dislocation at Q
within the ML, (f): (i) a coherent chain of particles, (ii) a chain with a>b
containing "ruptures" (broken segments), (iiiﬁ chain with a<b containing
“distortions", (g) misfit curvature and (h) a misfit strain gradient.
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Fig. 2. 1D Frenkel- Kontorowa (FK;
model: A chain of particles ?adatoms
connected with elastic springs (harmonic
forces) of natural length a and force
constant g in adatom- substrate periodic
potential V(€) of overall amplitude V.
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Fig. 3. (a) Curve of atomic pair

E potential (in arbitrary units) vs distance
-2.0 ' r between members of the pair,
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Abbreviations

AAI adatom-adatom interaction

ASI adatom-substrate interaction

C-IC commensurate-incommensurate, coherent-incoherent

FK Frenkel-Kontorova )

IMD inefficient (imperfect) misfit dislocation

KS  Kurdjumov-Sachs

NW  Nishiyama-Wassermann

MA, MC, MD, MF, MS, MSG and MV Misfir accommodation, curvature,
dislocation, fracture, strain, strain gradient and vernier

ML  monolayer

TD  threading dislocation

VM  Volterra model

1. Introduction
1.1. Misfit

The epitaxial growth of one crystal on another has been studied as a fundamental
problem for over six decades. Only in the past two decades, however, has there
existed a practical interest in understanding the phenomena more completely.
This recent practical interest has arisen out of the great need of the semiconductor
industry for crystals free from dislocations and other defects. As the use of
electronic _devices became more demanding and sophisticated, the need for
perfection of the crystals comprising the devices has increased. This is particularly
true for superlattice structures.

Central to the growth of nearly perfect epitaxial overlayers is the concept of a
coherent or dislocation free interface. The thickness above which dislocations
appear in the interface during the growth of an epitaxial layer is known as the
critical thickness. Because of the importance of this parameter to the fabrication
of acceptable semiconductor devices, classification of the various approaches to its
calculation is desirable. Before discussing the calculations of critical thickness, it is
necessary to define the nature of the misfit associated with the interface between
two different crystals. '

The general case of fitting together two crystals of different lattices in an
oriented way across an arbitrary but fiat interface, was dealt with theoretically by
Pond {1} and by Bilby et al. [2]. We follow the latter authors who introduced a
geometrical closure failure B to a Burgers circuit enclosing a section of the
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interface. The vector B varies with direction of the interface and may be written
in terms of a reference vector V lying in the interface as

B=[S"'-5;"lv, (1)

where S, and S, are the “deformation” matrices that generate respectively the
lattices of crystal 1 and crystal 2 from a reference lattice in which B and V are
defined. The general case that includes crystal symmetry and coincidence lattices
can be incorporated in the use of eq. (1) to express the deviations from
coincidence and symmetry positions. In this chapter we are concerned with cases
in which the crystals are simply related. to one another through the matrix § of

-small deformations. In this case the closure failure is represented by a set of

dislocations of sufficient separation to be considered individually, When V cuts m,
dislocation axes of Burgers vectors b, then

B= 2 mb, (2)

and the average spacing between like dislocations of given type i measured along
V is Vm_'. It is convenient to express the closure failure in terms of three
physically distinguishable components {3]: B, is the component normal to the
interface and represents the component of B produced by tilt around V, where V
is the unit vector parallel to V; B_is in the plane of the interface and normal to V
and represents the twist or shear component; and lastly B, is parallel to V. The
component B, is the misfit component which is of interest to the present chapter,
and it is this component that provides a definition of misfit f as measured along
the direction V of the interface as

=v =V 3)
When the deformations S are small and contain no rotation terms a pure misfit
boundary between two parallel orthorhombic crystals results and typically sug-
gests one of two choices for the reference lattice. When the two crystals across the
interface are of comparable thickness, or are both “thick™, then the choice of a
reference lattice that has lattice constants between those of either crystal is
appropriate. According to a simplified treatment of the closure failure [3] one of
the reference lattice constants, say A is chosen to be

¢ =a,a,la,, (4a)

where a, and a, are the lattice constants in a chosen principal direction a of the
respective crystals 1 and 2 and

a=j(a, +a,) (4b)

is the average lattice constant. This choice of reference lattice constant is also the
one adopted by van der Merwe in his model for thick crystals [4]. Equation (3) in
conjunction with egs. (1) and (4a) and (4b) yields for this case

f=f,=(a,-a))lc: similar thickness, (4c)

as the misfit in the d-direction of the lattices.
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The second choice of reference lattice is appropriate to a thin crystal on a thick
substrate. In this case it is natural to take the substrate as the reference crystal. If

we call the reference crystal 1 then S, ' = I, the identity matrix, and hence eq. (1)
becomes
B=[I-5S;"1v. (52)

which is equivalent to the approach of Bollmann [5]. The misfit now, is by egs.
(3) and (5a),

=(a,—a,)/a,: thin overlayer . (5b)
a 2 1 2

The advantages of definitions (4c) and (5b) have been discussed by Matthews [6].

Epitaxy of crystals with different symmetries is also of interest. A case that had
been considered extensively is the epitaxy of metals at (111) fec/(110) bec
interfaces [7, 8] in which two dominant epitaxial orientations (the Kurdjumov-
Sachs and the Nishiyama-Wassermann orientations) differing by about 3occur
depending on the ratio of nearest-neighbor distances. The two misfits f, and f,, of
the form (4c¢) or (5b), are usually defined for two suitable orthogonal interfacial
directions, f, and f, being significantly different.

1.2. Modes of misfit accommodation

The above considerations are purely geometrical. The special response of the near
interface atoms to the fields AA and BB within each of two misfitting epitaxial
crystals A and B and the coupling field AB between them is normally referred to
as “misfit accommodation™ (MA). In the foregoing we have tacitly assumed that
the misfit f is accommodated by dislocations, so-called misfit dislocations (MD’s).
However, this is not the only mode of MA. The resulting mode in any given case
depends largely on the magnitude and nature of f as well as those of the fields.
The possibilities considered are illustrated in fig. 1.

Consider a pure misfit boundary, i.e. S, and S, are diagonal matrices that
represent small dimensional changes, not rotations. There are numerous modes
by which the misfit of this interface can be accommodated. These mechanisms can
operate individually as a single mode or in concert with several modes participat-
ing. Homogeneous elastic strains that reduce the effective misfit from f to zero
(fig. 1b), i.e. B—0, have first been observed in metals [9-13} as reviewed by
Matthews [14] and are now commonly observed in strained layer superlattices of
semiconductor crystals [15]. This strain is referred to as the misfit strain (MS)
[16-17], and interfaces for which the misfit is accommodated entirely by MS are
said to be pseudomorphic or coherent [18]. Similarly, free-standing crystals may
bend with neutral planes that are positioned so that the misfit at the interface is
accommodated by the lattice parameter gradient introduced through lattice
curvature [19-22]. We can refer to this mechanism (fig. 1c) as misfit curvature
(MC). A third strain mechanism for accommodating the misfit also exists. It is a
simple gradient of strain (misfit strain gradient: MSG) that takes a coherent
interface from its constrained lattice parameter at the interface to its bulk lattice

réund

symbo |
o
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Fig. 1. Diagrammatic illustration of modes of Misfit Accommodation (MA) in a bicrystal of crystals A
and B with natural lattice parameters a and &. The full lines designate atomic planes and the dashed
lines interfaces, all viewed edge gn. (a) Crystals as though rigid, or with vanishing interfacial
interaction, or both: Misfit Vernier ( mode of MA. (b) Crystal A homogeneously strained (a— a)
into registry (4 = b) with B; Misfit Strain (MS) mode of MA. (c) Crystals bent into registry at
interface; Misfit Curvature (MC) mode of MA. (d) Misfit accommodated by a Misfit Strain Gradient
(MSG) within a finite thickness. (¢) Crystals elastically relaxed so that both the residual interfacial
misfit and the strain are very much localized around regularly spaced (dislocation) lines; Misfit
Dislocation (MD) model of MA. (f) A MD formed from a glide dislocation on a slip plane § has its
&~ Burgers vector inclined to the interface and constitut%n Inefficient Misfit Dislocation (IMD).

parameter at the free surface [23] as in fig. 1d. This can occur when the height to
width ratio for a deposit is comparable to the mutual misfit. More precisely, since
the MSG is not expected to be linear but to decay rather faster than linearly with
distance normal to the interface, there is an effective thickness above which the
lattice parameter is essentially that of the bulk. It is this feature which means in
practice that there is no critical thickness (or the critical thickness is infinite), but
there is a critical misfit which decreases with increasing width. Heterostructures
involved in ultralarge scale integration can take advantage of this misfit accommo-
dation mode. Recent evidence of misfit dislocations between the reconstructed
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topmost surface of a small gold platelet and its bulk underlying layers [24, 25}
suggests that the MSG mode of accommodating misfit may not always be
energetically favored. ‘

When the interfacial bond is weak and the misfit large [8], the structure of the
interface (fig. 1a) resembles the rigid misfit vernier (MV). This mode of misfit
accommodation or one approximating it has been observed in some metal-non
metal epitaxial systems [26]. :

An uncommon mode of misfit accommodation is fracture (misfit fracture: MF).
If the interfacial bond is strong and the epitaxial layer brittle, then a tensile misfit
strain can be relieved by a crack on thenormal to
the interface. Epitaxial garnet films show this mode of misfit accommodation [27].

The most common mode of accommodating misfit is by misfit dislocations
(MD’s; fig. 1e). A MD is defined as an interfacial dislocation that generates the
transition between the two lattices and is said to accommodate the misfit f.
Essentially it replaces the long-range stresses due to the MS by the oscillatory
strains of the MD’s to reduce the overall energy. There are several choices of MD
arrays that will accommodate the same misfit. Minimum energy considerations
coupled with barriers to MD generation determine which of the available choices
will be realized. The most common MD’s have an edge component of the Burgers
vector b that projects along the direction of interfacial misfit. The most efficient
MD has its Burgers vector in the interface and is therefore one of pure edge
character. It is referred to as an efficient or perfect MD, and was first observed by
TEM in PbS/PbSe bicrystals {28]. It is geometrically possible to accommodate a
pure misfit boundary of (001) orientations between orthorhombic crystals with a
crossed grid of screw dislocations [29] if the crystals are rotated so that the a-axis
of the one is parallel to the b-axis of the other and the misfits in the two directions
are therefore equal but of opposite sign. This same misfit boundary can also be
accommodated by a crossed grid of perfect MD’s. While the above considerations
show that MD’s are not restricted to any particular type of dislocation one usually
expects MD’s to have edge character.

The first experimental evidence for misfit accommodation by MD’s was ob-
tained from etch-pit analyses of germanium crystals with small gradients in
chemical composition {30]. Examples of misfit accommodation by only inefficient
(or imperfect) misfit dislocations (IMD) (Burgers vectors lying out of the
interface as shown in (fig. 1f) can also be found [31]. It is also possible to have
both inefficient and pure misfit dislocations present concurrently in the same
interface [32]. Indeed, accommodation of misfit by dislocation half-loops and
inefficient dislocations that have glided into the interface has been documented
[33-35]). Clearly then, the mechanisms available for the introduction of the
various types of MD’s is of significant practical importance. It is now commonly
observed that MD’s occur in most epitaxial systems, as has been reviewed by .
Matthews [6, 14].

The last mechanism for accommodating misfit to be discussed here is that of
ledges. Often substrates are oriented off major crystallographic planes so that
steps in the surface are available for nucleation sites. Further, the appearance of
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growth steps and ledges at interphase boundaries is common [36]. The occurrence
of stepped interfaces to improve the matching of interphase boundaries with misfit
has been known for some time [37-40]. The suggestion that steps associated with
terraces may accommodate misfit at an epitaxial boundary has also been made
[41]. It is only recently that the energy of a misfit boundary with ledges has been
calculated [42]. A planar misfit boundary may improve the overall interfacial
matching if a sequence of steps. that effects a relative displacement of the atomic
patterns on either side of the interface so as to insure that disregistry is never
greater than about one quarter of an atomic spacing. is introduced {42,43]. A
detailed treatment of this problem is in progress [44].

1.3. Goals

The main goal of the present paper concerns the accommodation of misfit by
MD’s for the case of a pure, flat misfit boundary. It is the MD’s that are the
center of attention because of their importance to electronic device performance
and reliability. If MD’s and MS(¢e) coexist, the portion of the misfit f accommo-
dated by MD’s being f, one may write for each interfacial direction of a thin
epilayer A on a thick substrate B (to first order) [14]

f=f+é; e=|e| (68)

the corresponding quantities in the two directions being equal when the interfacial
symmetries are quadratic, but otherwise unequal. In the Frank and van der
Merwe formalism [46]

a—-b a-b -a

f=b,f=b,é=a, (6b)

Q)

where a and b are the normal atomic spacings in A and B and a is the misfit
strained spacing in A; B, being thick, is unstrained. When both crystals are thin
provision must be made for MS in both crystals. Furthermore, coherence may
exist in one direction and disregistry with MD’s or a MV in a perpendicular
direction [8]. An implicit assumption, also in eq. (6a), is that the temperature
remains fixed at the growth temperature, or the half crystals A and B have the
same thermal expansion coefficients. Otherwise the equilibrium MS e may
decrease, or increase or even change sign. Technologically this is undesirable and
provision must be made to fit both crystallographical misfit and thermal expansion
coefficient [45].

The goal has thus been reduced to describing existing considerations on the
conditions that determine the distribution of f between f and €. Here it suffices to
report [46] that under certain conditions there exists a critical misfit f{'’ so that a
monolayer (ML) with f < f"’ grows coherently (f=0) while MD’s are present
when f > (" If for f < f'"’ more ML’s are added a critical thickness A is reached
above which there is a transition to MA with MS and MD’s jointly. Conversely
for given h = h_ the misfit f is critical, i.e. for f > f(h.) = f.(h) there will be a

|
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transition from coherency (registry, commensurate configuration) to incoherency
(disregistry, incommensurate configuration). The goals of this chapter are to
review and appraise existing calculations of f, and h_ with special emphasis on
their dependence on the physical properties of the bicrystals concerned and to
their correlation with experimental data — particularly the influence of the ex-
perimental conditions on this correlation.

1.4. Governing physical principles

The systems (vapors, crystals) and processes (adsorption, desorption. adatom
diffusion, MD generation and motion) involved in epitaxy fall respectively in the
categories of thermodynamic systems and rate processes. Therefore at an inter-
mediate stage any internal change under constant external constraints brings the
system nearer to the equilibrium (stable) minimum free energy (A) configuration.
The process is driven by free energy gradients —A A and progress is facilitated by
thermal (temperature T) fluctuations to overcome a hierarchy of energy barriers
U (e.g. adatom migration activation energy, and energy barriers towards nuclea-
tion and motion (Peierls) of dislocations) separating consecutive metastable
configurations. Thus the closeness of an observed configuration to equilibrium or
the degree to which it had advanced towards equilibrium. will otherwise depend
on the deposition rate (supply rate of adsorbate).

Since the analysis of equilibrium configurations on the basis of minimum free
energy, i.e.

A = minimum (equilibrium) , (7)

is so much easier than the dynamics of non-equilibrium processes, most theoreti-
cal predictions of the past were equilibrium based, the assumption being that in
many practical cases sufficient time had been available for the system to come
close to equilibrium. The perception is that knowledge of equilibrium configura-
tions will also provide useful guidelines of tendencies. Additional simplification
had been introduced by noting that, because of the regularity of the crystals and
of the MD arrangements adopted, the energy (E) contribution to A is dominant
and hence that the equilibrium configurations may be adequately characterized by
the condition that [6, 8, 46]

E = minimum (equilibrium) , (8)

Clearly the applicability of the theory requires the barriers to be small enough as
compared to thermal energies.

In the problem of epitaxy the scale of E, which has often been referred to as
the interfacial energy, is primarily determined by the strength of the AB
interfacial interaction and secondarily by the misfit. The primary goal has
therefore been to find the dependence of E on these parameters. The basic
assumption is then that the structure (mode of MA) is determined by the minima
of E with respect to these parameters.
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1.5. Growth modes

Of great importance to the consideration of critical size. e.g. critical thickness, are
the epitaxial growth modes that have been named by Bauer [47]: Frank and van
der Merwe (ML-by-ML, 2D) growth, Volmer-Weber (island, 3D) growth and
Stranski—Krastanov (island on top of a few ML's in 2D mode). Also the growth
mode is partly controlled by the prevailing degree of non-equilibrium as expressed
in terms of supersaturation. The supersaturation increases with decreasing sub-
strate temperature T, and increasing deposition rate. The equilibrium criterion for
the growth mode can be expressed in terms of the specific surface (vy,, v) and
interface (y,5) free energies [47] or bondings [48] per unit area E,, and E,; as

Ay g=Yat Yap ~ ¥ =0 or E,,—E,; =<0 for 2D growth 9)
>0 >0 for 3D growth,

where B is the substrate and A the adsorbate. For growth of the (n + 1)-st ML on
the n-th ML, Ay,; must be replaced by Ay, , ~0. However, Ay,, may even
become effectively positive due to influence of the nearby substrate. This is an
important reason for Stranski—Krastanov growth [49]. Equations (9) are simply
saying that when AB bonding is strong compared to AA bonding the tendency
will be to form AB rather than AA bonds. i.e. lateral rather than vertical growth.

The formation of smooth and planar interfaces and of uniform epilayers are
highly desirable, particularly in superlattices consisting of thin alternating A and
B layers, and is facilitated by 2D growth [48,49]. In this case one half of the
growth cycle will inevitably be 3D-wise at equilibrium. 3D growth can be modified
to occur 2D-like by having the appropriate supersaturation. The smoothness of
the interfaces will furthermore be facilitated by a choice of materials for which the
degree of three-dimensionality is low [48] as may approximately be expressed in
terms of a surface free energy ‘‘mismatch’ [49]. Since most practical applications
require smooth planar interfaces and uniform thicknesses, the fabrication pro-
cesses are tailored to achieve these goals. This lends more credibility towards the
usual practice of predicting critical misfits assuming layerlike growth.

1.6. Models

Almost all the earlier theories modeled the interaction (AA and BB) within the
crystals in terms of continuum elasticity (harmonic approximation) theory
{4, 6, 46]. Subsequently anharmonicity has been introduced [50, 51], and more
recently ab initio atomic calculations, using appropriate potentials, have also been
carried out [52].

The earlier theories adopted essentially two approaches for modeling the
interfacial (AB) interaction: the Volterra continuum model in which A and B
interfacial atoms undergo relative displacements parallel to the interface that are
limited to integer values of the (reference) lattice parameter, and the Frenkei-
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Kontorova (FK) model [53] that views the interfacial atoms of A to be in a
(sinusoidal) periodic field of crystal B and vice versa. The Volterra model (VM)
which has been extensively and profitably employed by Matthews [6, 14] has the
advantage of versatility and mathematical simplicity over all regimes of thickness.
Its main disadvantages are (i) its inaccuracy at small thicknesses and (ii) that it
does not allow for the widely varying interfacial (AB) bond strengths which are
important for thin epicrystals. The FK-model on the other hand makes appropri-
ate allowance for AB interaction and has fairly simple analvtical solutions for the
extreme cases: (a) a ML on a thick substrate for which the governing equations
- reduce to sine-Gordon types {46, 53-55] and (b) two thick crystals [4, 56], but has
to resort to approximations for intermediate cases except when the periodic AB
interaction is represented by parabolic arcs {56-57].

The model introduced by Frenkel and Kontorova is one-dimensional and was
first applied to epitaxy by Frank and van der Merwe {46] in their classic paper
concerning misfitting monolayers on thick (essentially rigid) substrates. It was
subsequently extended to two interfacial directions [8.46,54,55]. As in the
FK-model the complexity of the analysis was limited by truncating the corre-
sponding two-dimensional Fourier series of the periodic interfacial (AB) potential
at low harmonic order. a practice which has now been properly justified [58]. This
extended model has been used to show [8] (i) that minima in the (free) energy of
an epitaxial bicrystal occur when the interfacial structure and dimensions, and the
relative crystal orientations, are such that parallel interfacial atomic rows of the
two crystals are equally spaced, irrespective of whether in the rows the atoms are
in registry, (ii) that the depth of the free-energy minima may be directly
correlated with the values of specific Fourier coefficients and (iii) that the depths
are additive should matching also occur in a perpendicular direction to achieve
complete 2D registry. Thus, while the values of the Fourier coefficients are
indicative of the maximal energies that can be gained (the tendency to epitaxy)
from row matching in one or two dimensions, the matching itself predicts
precisely for given crystal structures the orientations for which epitaxy is ob-
served. Naturally the net gain will be reduced by strain energy if the matching is
achieved by MS.

The difficult part of the relevant analysis is to find expressions for the self
energies (line tension) E; per unit length of a MD. In the FK model and its
generalizations the analytical techniques have been different for a ML on a thick
substrate and for two thick crystals and approximate otherwise. Because of its
frequent use it is convenient for later reference to give the expression of Ey, for
two thick epicrystals [4, 56]:

HanCP , :
Ep="y3 [1+8-(1+p)" - BIn{28(1+8°)"* -28%)], (10a)
2mA,c 1 1-v, 1-y
WA + , (10b)
Fap P /\0 Mo My

where u,,, u, and u, are respectively shear moduli for the interface and crystals
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A and B. v, and v, Poisson’s ratios, ¢ = i(a + b) is a reference lattice parameter
and p the MD spacing. When p is large (c/p <1) eq. (10a) becomes

A(lC2 { ( I‘Lu/rp ) }
=~ —— ) +1. 10
Eo 27 P dA,c 1 (10c)
In the Voiterra model the self energy per unit length of a MD between an epilayer
of thickness h, and a thick substrate is given by [6. 14]

ED=Db{ln<§)+l}, D=Ab27. (11a)

where R is the “‘cut-off radius” usually taken to be

R= {p/2 when h,>p/2,

h when h,<p/2, (11b)

and the Burgers vector b is essentially the ¢ in eqs. (10). We note the close
similarity between (10c) and (11a) with R replaced by u,, p/4mA,~ p/10 for
crystals with similar atomic interactions instead of p/2 as in (11b).

This expression for E, can be adopted for the line energy of a MD or used to
calculate the energy per unit area,

Eo=rpy 'Ep+py'Eb
=2E,/p for quadratic symmetry , (12a)

of an interface for a network of MDs assuming that the crossing energy is
negligible [6, 14]. When the misfit i< partly accommodated by MS(¢é) the MS
energy, which is of the form [6, 54, 59]

h.é® per unit area. (12b)

for interfaces with quadratic symmetry, must be included. For this symmetry the
principal strains € are equal and the shear strain vanishes. When both crystals are
thin each will be misfit strained and contains MS energy of the form (12b)
[6,57,60]. In any case the total energy is

E=Ey+E, (12¢)

where (12a) and (12b) are special cases of E, and E; respectively.

1.7. Criteria

Various criteria had been used in the past to calculate the critical misfit f, and
critical thickness 4 .. These have recently been analysed in some detail [61]. It is
therefore necessary that we understand the basis of each and put them into
perspective. We begin by considering equilibrium criteria. For this purpose we
may display the functional dependence of the total energy of a thin epilayer A of
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uniform thickness h on a thick substrate as E(h. f; for €). We may further
minimize E by varyving the MS(¢e) (or equivalently the MD density f in eqs. (6)) at
constant # and f, obtaining from eq. (8) the governing equations [6, 46]

=—=— forée=é_ and f=f . (13a)
This defines the equilibrium values ¢, and f,, of ¢ and f.

The form (13a) of the equilibrium condition clearly implies extensive interfaces
with many MD's so that it is meaningful to speak of varying f continuously rather
than discretely. The second part of eq. (13a) lends itself to an interpretation that
not only overcomes this difficulty but in some cases also leads to a drastic
simplification of the analysis: if £ does not change with f, it is saying that the work
W done to create the MD vanishes, i.e.

W=des=O foré=¢_, and f=f,_; (13b)

for e = e, the work W =0 respectively. In eq. (13b) F is an external force needed
to generate the dislocation and ds is the surface displacement, or F is the
integrated force on an existing dislocation (extending from the interface on the
free surface or other interface) from which the interfacial MD is created (drawn
out along the interface) and ds is an infinitesimal displacement of the (existing)
dislocation line. Both F and ds are measured in the direction of increased length
of MD line laid along the intersection of the interface and the slip plane of the
“threading’’ segment of the crystal dislocation in the strained epilayer. It is the
glide of this threading dislocation (TD) that creates increased length of MD line;
the glide direction and direction of “increased™ MD length are the same. When F
is constant (independent of the displacements) the equilibrium equation (13b)
reduces to [6, 14]

0=F=F,-F,, (13c)

where F; is the MS-induced Peach-Koehler force on the TD and Fy, the resistance
due to the MD line tension. F may also be an external force needed to inject a
MD and ds correspondingly a dxsplacement of the point(s) of application of F as
in refs. [46, 54, 55].

The problems associated with the forces between MD’s in an interface of finite
width between two cylindrical half crystals, their interplay with misfit and MS,
and the mechanics of consecutive incoming MD’s, have been analysed in some
detail by Nabarro [62]. These provide useful insights into the behavior of MD’s at
the onset of coherency breakdown.

Equations (13) are three equivalent criteria (except that (13c) is a special case)
for the equilibrium distribution of given misfit f between MD’s ( f) and MS (¢) at
given thickness h of epilayer. As h decreases, the MS energy for fixed € decreases;
alternatively the MS e for fixed MS energy increases so that the density f of MD’s,
needed to satisfy eq. (2), diminishes until it vanishes ( f = 0) at a critical thickness
h. [6,14]. Conversely f. = f is the critical misfit at given thickness h = h_. The
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conditions for the critical misfit f_ at given h and the critical thickenss A_ at given f,
are respectively [6. 57]

&h. f.; f=0)=0 and &(f h;f=0)=0, (14)

where ¢ is one of the functions of egs. (13).

Consider the introduction of MD's into an initially coherent epilayer. The line
tension increases the energy according to E in egs. (10) or (11) and the
Peach-Koehler force decreases the MS energy E; in eq. (12b). Furthermore, in
the FK-model, at equilibrium there are no MD’s ( f = 0) below the critical misfit f,
and many - almost enough to-accommodate all ( f = f) the misfit — above f, [46].
On the basis of these considerations it has previously [6] been assumed that the
condition for f, is approximately equivalent to the condition that f = f, when all
(¢ = f) the MS energy E in egs. (12b) can be traded for MD energy in eq. (12a)
with f = f [56]:

Eih, fsé=f)=Ep(h, f5f=1), (15)

“instead of a configuration where é and f coexist. This approximation has sub-
sequently been used by other authors, as dealt with below. Recent calculations
[57] have however shown that this approximation is rather inaccurate and may
overestimate the critical misfit by as much as 25% and the critical thickness by as
much as 35%.

The foregoing considerations apply to the case where the availability of MD's is
not an obstacle [6, 46]. Normally the introduction of MD’s is subjected to the

overcoming of energy barriers [46]

U= f Fds. (16)
bar
The most prominent barriers are associated with the nucleation of MD and the
Peierls stresses opposing their motion [6, 14]. The barrier heights are reduced by
the misfit stress (Peach-Koehler forces). When U vanishes, i.e.

U=o0, (17)

MD’s generate spontaneously without the aid of temperature fluctuations [46].

When U >0 the acquisition of MD’s depends upon the thermal energy kT.
When U =30kT the barriers are completely prohibitive and the system will
remain almost indefinitely in a metastable configuration. When U <30kT the
attainment of equilibrium takes time and the observed configuration may differ
significantly from equilibrium.

2. Calculations: equilibrium
The criteria employed for calculating critical parameters as defined in egs.

(14)-(17) may be broadly separated into equilibrium and non-equilibrium
criteria. The equilibrium category can be subdivided into (i) energy criteria when
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the energy values are compared as in eq. (15) or the energy is properly minimized
as in eqgs. (13). (ii) stress or force criteria as given in eq. (13c) and (iii)
geometrical criteria where good “matching™ is implied to be equivalent to low
energy. The non-equilibrium category, which recently became the subject of
intensive study, can be subdivided into calculations concerning (i) nucleation
energies of MD’s (ii) other energy barriers and (iii) the reduction of the
activation energy by MS until it ultimately vanishes as in eq. (17) and MD's
generate spontaneousty. and (iv) the solution of the rate equation to establish the
degree of progress at any time ¢ towards achieving equilibrium. Often diverse
approaches are encountered within each of these categories.

2.1. Energy criteria

2.1.1. Precipitates

The first calculation of a crtical size was made by Nabarro for the case of a
misfitting sphere in a crystalline matrix [63]. Although this is not really an
example of “epitaxy” it is directly related and. being the first, warrants some
consideration. Nabarro essentially employed the criterion (15) and equated the
elastic strain energy associated with the coherency strains, MS, to the rise in
interfacial energy that occurs when coherency is destroved. The interfacial energy
was estimated by the energy required to melt a monolaver at the interface. The
same mode] was emploved by Jesser [64] but with a more realistic expression for
the interfacial energy. The sum of the misfit strain energy and interfacial energy
was minimized as in eq. (13a) to find the critical radius above which coherency
loss is energetically favored. In this case the interfacial energy expression of van
der Merwe was used. A similar model in which the interfacial energy is replaced
by the energy of a single Volterra type prismatic misfit dislocation loop of radius r
equal to that of the misfitting spherical precipitate (r,) provides yet another
expression for the critical radius r_[65]. The authors considered the nucleation of
a prismatic dislocation loop within the precipitate. its ﬁwth by climb and its
ultimate positioning on an equatorial plane in a circle 6f radius infinitesimally
smaller than r,. Its energy of formation E, = E, — AE; is approximately given by

E - ;.l.bzrp (I 8r, ) wri4ubf
T20-n) \" b 1+4p/3K "

where E, and AE; (e = f) are respectively the (Volterra) self energy of the loop
and the MS energy release in the precipitate and. u, K, v, b and f respectively the
shear modulus, the bulk modulus, Poisson’s ratio and the Burgers vector (all of
the precipitate) and f the misfit. From (18a) two alternative critical radii may be
deduced:
s _ b(1+4u/3K) [
"™ T8af(1-v)

the one (s = 1) when E; =0, i.e. the formation becomes energetically favored (see

(18a)

.
s eb

8r :
L ’«+s]; s=1.2. (18b)




Same
Symbo‘

caP W,

"’HP’“; W. A Jesser and J. H. van der Merwe Ch. 41

eq. 15). and the other (s = 2) when JE/dr =0, i.e. the precipitate can support an
already existing loop at its surface. Note that eqs. (18b) are implicit equations in
the unknowns r_ = r_.

2.1.2. Layer-like growth

The first calculation of critical misfit and thickness in epitaxy was made by Frank
and van der Merwe [46] in their analysis of a one-dimensional Frenkel-Kontorova
model [53]. In this model the competing forces positioning the adatoms were
modeled as follows: the adatom-adatom interaction (AAI) that favors the
crystalline structure of the overlaver by. harmonic (approximation) forces of force
constant ‘") and the periodic (periodicity b) adatom-substrate interaction (ASI)
by a one-dimensional Fourier series (truncated at first order) of overall amplitude

V= WY1 - cos(2mx/b)] .

Equilibrium considerations (eqs. 13a, b) yieldf'a critical misfit £’ of

)

\ £ =2/4f). (19a)
same ‘1'"\” = wVb712W, (19b)
)

The appearance of u''’ and W,. as measures of AAI and ASI respectively,
stresses the importance of interaction strengths in determining f,.

These results can be extended to a thickening overlaver (crudely though) by
assigning to a layer of multiplicity n the force constant nu''’ Equations (19) in
conjunction with (14) accordingly predict a critical thickness {46]

h,=8W,/mu'Vbf* (20
[ 0

The authors estimated f''’ to be about 9% when the AAI and the ASI's are the
same. The extension of these considerations to non-equilibrium phenomena will
be discussed in section 3.

Although the foregoing model is one-dimensional it has proved to be quite
successful and has been the basis and stimulus for numerous extensions to more
general cases. The most obvious extension was to two-dimensional model mono-
layers (ML’s) [8, 46, 54]. This extension introduced Poisson’s ratio v, of the ML,
whereby eqgs. (19a) and (19b) became

=2 (21a)
F = w,hb*/(1 - v,)W, (21b)

for cases with quadratic interfacial symmetry, p, now being the shear modulus
and h the thickness; h# = a for a ML. Critical thicknesses as in eq. (20) may also
be defined for this two-dimensional extension. The effect of Poisson’s
phenomenon is essentially to reduce the critical misfit; in the average case (AAI
and ASI the same) from f!" =9% to about 7%. with an analogous effect on
critical thickness.
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A relevant case that had been very topical recently is the epitaxy of metals at
(111) fec/(110) bee interfaces {7, 8. 49. 55] where the misfit differs greatly in two
mutually perpendicular directions and the occurrence of coherency in one direc-
tion only is a natural consequence. Loss of coherency for this case has been
studied extensively on the ML or quasi-ML level as for eqs. (21). Also in this case
a “conﬁ%urational" parameter € of the form in eq. (21b), containing the bond
ratio ub7/(1 - v)W, and thickness A. together with the nearest-neighbor distance
ratio r = a[fcc (111)}/b]bcc (110)]} rather than the misfits explicitly. enter natural-
ly into the theory. When ¢ is small enough a ML grows with 2D coherency for a
wide range of r values. As h, and accordingly ¢, increases there is a critical
thickness A, at which there is a transition to 1D coherency in the Kurdjumov-
Sachs (KS) orientation at a critical thickness hys when r is near 1.09 (small misfit
fxs) or to 1D coherency in the Nishiyama-Wassermann (NW) orientation at Ay,
when r is either near 0.94 or 1.15 (small misfits fyw). The transition to the KS
orientation requires a rigidlike rotation of about 5% and its realization may thus
be impeded. Furthermore, higher critical thicknesses for loss of the residual 1D
coherencies exist. These critical thicknesses are only known semi-quantitatively,
like h_in eq. (20). In all these cases the Poisson effect is important, particularly in
the MS energy. The role of Poisson’s ratio on critical thickness in a variety of
cases has also been studied by Jesser and Kuhlmann-Wilsdorf [59].

The most useful extension to the considerations of Frank and van der Merwe
was to thickening epilayers, including combinations with different elastic con-
stants [56. 57, 61, 66]. Additional improvements to the model have been made in
the form of more accurate representations of the MD energy. as has recently been
reviewed [67]. While the extensions of the model to very thin epilayers (less than
about two ML’s) and to very thick ones are acceptable, it is poor in the regime
exceeding two ML’s; particularly when the misfit is small. It is in this regime that
the approximations employed in the calculations introduce significant effects
because the energy of the MD’s in the interface is given by an expression that
relies on the epilayer thickness being greater than half the spacing between MD’s.
This limitation led Matthews to adopt a Volterra dislocation approach to calculate
the energy of an array of MD’s [6, 14]. The Volterra model employs a *“‘cut-off”
radius R to the dislocation strain field defined with regard to eqs. (11). Since near
f=f. the MD spacing becomes large the finite thickness h of the epilayer A must
be taken as R. Minimization of the total energy in eq. (12c) yields for f, at given h
(using the relations (14)) the result [6, 14]

= e lol2) ]

or, alternatively for the critical thickness A_ at given misfit f the implicit equation
“sg7ln % 1)
h‘_2Bf In b +1 (22b)

for a bicrystal AB with quadratic interfacial symmetry. Note that relations (22)
imply that y, = y, = ». Also no dependence on interfacial interaction is incorpo-
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rated. This approach is good for thick epilayers but is inaccurate when the
epilayer is thin because the role of the ASI is significant here. and the strain field
of the MD can extend along the plane of the interface to greater distances than
the cut-off radius, which is equal to the film thickness. However. it has the great
advantage of simplicity in its representation.

The calculation of critical thickness by energy minimization has also been
carried out for partial MD's. Such MD’s will have stacking faults associated with
them. The stacking fault will extend through one of the crvstals and will terminate
at the MD in the interface. This case has been treated in the model of van der
Merwe using eq. (10) modified for the incomplete Burgers vector [68], as well as
from the Volterra dislocation-energy point of view using force-balance criteria
[6, 14]. The model of van der Merwe makes provision for a variable interaction.
The effect of generating incomplete MD's associated with stacking faults is to
reduce the critical thickness. This can be understood as the result of the shorter
length of Burgers’ vector reducing the energy of the MD’s to a greater extent than
the stacking fault raises the energy. Negative stacking-fault energy and lattice
parameter changes normal to the plane of the fault will also affect the critical
thickness, but are usually not considered in the analysis.

The question of critical thickness h_ has also addressed more recently by
Bruinsma Zangwill [69] using the Volterra approach to the energy of a MD but a
different analytical technique. They included anisotropy effects. but made the
simplfying approximation that there exists an “‘easy” direction for loss of coheren-
cy by the introduction of a single sequence of MD's. One would expect this to
occur for epitaxy at (111) fcc/(110) bec interfaces characterized by widely
different misfits in two perpendicular interfacial directions. The authors obtained,
like Matthews, an implicit equation of the form (22b) but with somewhat different
entries and give their (approximate) result as

h_= k,/f, (23)

where &, is a “‘constant” depending on elastic constants as in eq. (22b).

Only one model exists, i.e. the one in which the periodic adatom-substrate
interaction potential is represented by a succession of parabolic arcs [56, 57],
rather than a truncated Fourier series, that has been solved exactly for all
thicknesses (k) and strengths of atomic interaction. In this model the effect of
unrealistic potential maxima (high cusped peaks) on the prediction of critical
thickness is drastically reduced because at the critical thickness the MD’s are
widely spaced and the contribution of the peaks to the overall energy is
presumably small. The critical misfit for given h and materials with identical
atomic interactions is now given by

1-v dx
f= 4n(1+ ) ] X[X + ad(X, a)]
S(X.a)= 1 X(s*+cs— X— X°)+8(c +5)/2(1 - 2v)
T I X - XY + 85 +sc+ X—X)/2(1-20)

8§=2(1-v)hla, s=sinh X, c=cosh X .

(24a)

(24b)
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For different elastic constants and thicknesses the critical misfit f, has the same
form as (24a), but now the function ¢ is vastly more complicated [70]. Alterna-
tively, for given misfit ( f. = f) this is an implicit equation for the critical thicknes
h.. \

2.1.3. Island growth

The foregoing case of uniform epilayers covering a substrate is of great practical
importance. In the initial stages of epitaxial growth. however, most systems
exhibit island growth, which may be Volmer-Weber or Stranski-Krastanov
growth [47]. If the misfit is not smali or if the thickness at which the growing
deposit becomes nearly continuous is large then loss of coherency will tend to
occur when the deposit is in the form of individual islands. The coherency strain
energy for the case of island deposits was first calculated by Cabrera [71]. This
model included elastic strains in both the island and the thick substrate. It was
used to calculate the critical radius above which it is energetically favorabie to
introduce MD’s [59]. The calculation of critical misfit and thickness in this case
differs somewhat from that for layer_growth. The authors have assumed that at
the interface between a non-coherent hemispherical epitaxial island A of radius R
and a thick substrate B MS’s of magnitude ¢, and ¢, exist with equilibrium values
¢, and é, . The condition for the critical misfit was taken as

(25a)

i.e. that almost all the misfit is accommodated by MS. For the case in which the
atomic interactions are the same (u, = ¢, = u) and the interfaces have quadratic
symmetry (a, =a, = a) it follows. using eq. (10a). that for given R (approxi-
mately) '

e +e=

c

3b(4a, + a, s s
ﬂ='_R(f&%%%°) BIn[28(1 + B*)'"* - 28%). (250)
g = (25¢)

T(d-»R-

where a, and a, are the nearest-neighbor distances in overlayer and substrate
respectively. This is an implicit equation in f_. For given misfit f, eq. (25b) defines
a critical size R_.

Because of the finite size of an island the introduction of discrete MD’s causes
an abrupt decrease in MS which was observed experimentally in tin deposits on
tin telluride by Vincent [72]. For this case of discrete MD generation the
calculation of critical thickness and subsequent MD introduction with island
growth laterally has been considered from the point of view of energy minimiza-
tion using Volterra MD’s [6], and using the Frank-van der Merwe model [73].
Vincent used the criterion that MD’s would be generated at an island size for
which the MD would reduce the MS to zero. The main significance of the above
calculations for the present paper is that the island morphology is the ideal one
for availability of MD’s because an efficient MD can be generated at the edge of
the island. This mechanism for the generation of efficient MD’s has been
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confirmed experimentally by Yagi et al. [74]. Therefore one expects the barriers
to MD generation to play only a small role in epitaxial systems exhibiting island
formation, particularly at elevated temperatures where dislocation mobility is
high. In such cases good agreement between experimentally observed values of
critical size and calculated values is found.

2.1.4. Superlattices

In view of the increasing importance of superlattices over the past decade it
became similariy important to develop an energetic approach to calculating the
critical thickness for this case. A first approximation was made by applying the
van der Merwe expression for the energy of an array of MD’s to the stack of
interfaces {67]. This approximation did not, however, include the reduction of
MD energy caused by the cancellation of strain fields across the layer between
interfaces. This cancellation is strongest when the layer thickness is small.
Further, the expression loses accuracy when the misfit is small. Both of these
effects, which are relevant to the case of superlattices of layers A and B, have
been recently accounted for more properly by reworking the interfacial misfit
boundary from first principles including the boundary conditions applicable to
superlattices [57].

In this approach [57] the following boundary conditions were adopted for the
interior of an extended superlattice: (i) the normal and tangential forces at the
interface are almost everywhere linear functions of the corresponding relative
displacements of atoms on either side of the interface [56]. (ii) the stresses acting
through the interface are continuous there. (iii) the midplanes between interfaces
remain plane and contain no shear parallel to the interface. (iv) the superlattice
faces normal to the interface are free of forces and (v) the crystals may otherwise
be approximated by isotropic elastic continua. The governing equations of this
model are exactly solvable. The critical misfit f, as determined by eq. (14),
depends on the ratios of elastic constants (M) and thicknesses (r). i.e. on

- (1 + Va)(l - Vh)”’a — hd —_
D T A (262)

and on the thickness of any one l'ayer (taken as 2h,), through an equation of the
form

M

_ _(=n)+H'M Y, ( dx
fln; H, M) = dn(1+ v)u, of X[X +8(n)$(X)]’

(26b)

where 2h, is the thickness of layer A, c is a reference lattice spacing, 8(n) =
2(1~ v)n and ¢(X) is a complicated function of the variable X, elastic constants
and thicknesses. In accordance with the criterion (14) this equation defines for
given misfit f, = f, and ratios H and M. a critical thickness n = n_.

Various simple and asymptotic cases of this prediction have been considered of
which the simplest is the one in which the layer thicknesses and elastic constants
are respectively equal. In this case
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5

_ cosh® X
" sc+X  sinhXcosh X+ X’

) (26¢)

i.e. it is no longer dependant on thickness and elastic constants. Also, approxi-
mately

fn) = % [76% arctan 2B + %S ln(l + g)] (27a)
B(m)=[(9+4m/6n]'?,  6=2(1- . | (27b)

Two conclusions from these results warrant special mention. Firstly it follows
from a log-log plot that n_ varies approximately as f ~*; y = 1.22 as compared to
x =1 for previous estimates and y =2 for eq. (20) and the approach of People
and Bean [75], which apparently agreed with observations of Bean et al. [76].
Also this calculation shows that when the layer thickness is small the energy of the
MD’s decreases by a factor of two over that of a single layer on a thick substrate.
For thick layers, these energies approach one another. Further, since the misfit in
a superlattice is accommodated equally by homogeneous elastic strains in each of
the layers when elastic constants are equal, the critical misfit and the critical
thickness both increase by a factor of up to five over their respective values for
the case of a single layer on a thick substrate.

2.1.5. Graded epilaver

A critical thickness calculation for a bicrystal of a different kind was performed by
Ball and Laird {77]. The authors considered coherency loss by the introduction of
60~ imperfect MD’s in a graded epilayer in III-V compounds, expressing the
variation of lattice parameters by Vegard's law for a uniform composition
gradient. They used the Volterra approach in expressing the stresses and calcu-
lated the work W needed for MD’s to glide in from the free surface; a mechanism
which also involves the overcoming of surface image barriers. Defining A_ as the
value of h which satisfies the relations (13b) and (14) they obtained (approxi-
mately)

1+
he=—2 Pm

=1, P, (28)

where d is the average spacing of atomic planes aligned parallel to the interface,
P, is the value of g/h at which W rises to a maximum as ¢ increases and g is the
distance of the MD from the free surface. The dependence of h_ on grading s is
calculated using the parametric equation (28) h.= h(p,) and s =s(p,) (the
latter from the equilibrium equation), rather than calculating p,, directly from an
extremum condition. In comparing these predictions with experiment the authors
concluded that even in epilayers without threading dislocations, dislocation
multiplication, which will inevitably take place, may introduce serious dis-
crepancies between theory and experiment.
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2.2. Stress and force criteria

We now consider in some detail the application of force or stress balance in
calculating equilibrium critical parameters. We have discussed, in relation to eqs.
(13) the conditions under which force balance and energy minimization (equilib-
rium) procedures are equivalent. Neither explicitly involves the nucleation energy
barriers associated with the acquisition of MD's. The minimization procedure may
ignore the barriers because only initial and final energies are relevant. The force
balance procedure, on the other hand. presupposes the existence of threading
dislocations (TD’s), so that nucleation is in any case irrelevant. The mechanism of
gliding a threading dislocation that threads the substrate. interface and epilayer
on a single slip plane into the interface to make an increased line length of MD
was first proposed and observed by Matthews [10]. An inevitable consequence of
this mechanism is that the resulting MD is of imperfect type (fig. 1); as for
example, when the generating dislocation is a glide dislocation in the
semiconductor. The Peach-Koehler driving force F; on the dislocation, due to
MS, is proportional to the thickness of the epilayer. The force Fy, opposing this
glide force is the line tension. Matthews has used the Volterra approach (analog-
ous to eq. (11a)) to calculate the line tension. When a critical thickness is reached
for which the resultant vanishes so that the condition (13c) is satisfied. then any
further increase in thickness will sweep the threading dislocation along the glide
plane while it draws out a MD along the interface [13].

2.2.1. Thin epilayer on a thick substrate

This model has been improved by adding the line tension o, (force F,) of the step
generated at the free surface when sweeping the threading dislocation [6, 14].
Furthermore, if the threading dislocation splits into partials separated by a

stacking fault (energy 7, per unit area) in the epilayer then the above model can
be extended to include the relevant force F, needed for stacking fault formation.
The condition in (13c) may accordingly be used to derive an expression for the
critical thickness above which imperfect MD's will be introduced [6, 13, 14, 35].
The force balance equation (13c) now takes the form

O=F.+F,+F,+F,
= Bbhé cos A + Db(1 ~ v cos’ a)[in(h/b) + 1] + o,b sin a + yh/cos ¢
(29a)
and yields for the critical thickness h_ (€ = f) the implicit equation
_ Db(1 - vcos’ a)[In(h./b) + 1] + gpb sin a
<7 Bbf cos A — y,/cos ¢

where A is the angle between the slip direction and the interfacial direction
normal to the line of intersection of the slip plane (S) and the interface, a is the
angle betweenfline of the mixed MD and its Burgers vector b and ¢ is the angle
between the unit vector i, normal to S, and the line of intersection of the free

h . (29b)

rond o
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surface and a plane which is normal to the free surface and contains 7. Note (i)
that in the term In(h/b) h is the cut off radius assuming that A is less than half of
the MD spacing and (ii) that for a perfect MD the 1y, term is absent and b is the
complete Burgers vector. This example illustrates the power of the force balance
approach. A disadvantage of the approach is that it handles less well the
interaction between MD’s.

3.2.2. Superlattices

Hirth and Evans developed a criterion for critical thickness by considering
injection of a dislocation dipole or a crack from the edge of a stack of coherent
layers {78], into a superlattice in which consecutive layers have equal thicknesses
and elastic constants. They calculated the Peach-Koehler force on the mobile
segment of a dislocation dipole with one leg in one interface and the other leg in
an adjacent interface connected by a segment threading a layer on its slip plane.
This force was equated to the line tension of the mobile segment as was done in
previous models {15]. The thickness for which this force balance occurs is the
critical thickness &, that was calculated for isotropic elasticity as well as aniso-
tropic elasticity. The results of this approach essentially agree with those of the
earlier similar model [15], and for isotropic elasticity give

_ b(1 - vcos® a) (\/_6.I1c>
T T 2m(l+v) N\ 2br, /-
This result is very much the same as the ones already dealt with except that the

V6 corresponds specifically to the GaAs/GaAs, P, . system considered and ry is
a core cut-off parameter.

h (30)

2.2.3. Multlayers

Bokii and Kuznetsov have also calculated the critical layer thickness for mul-
tilayered double heterostructures of Ga In,_,P,_ As_ alloys from the point of
view of balancing the MD line tension and surface step resistance to dislocation
motion with the Peach-Kochler force on the MD due to the MS [79]. They
started with the expression for critical thickness by Matthews [80] and allowed for
elastic bending (a non-vanishing couple) by employing the elasticity calculation of
Olsen and Ettenberg for the elastic bending of multilayer heterostructures [81] to
develop a modified expression for the critical thickness of the topmost layer in the
stack. They obtained for the critical thickness 4, in the topmost layer of a
multilayer of multiplicity j the expression

_ b(1 = vcos® a)[in(h,/b) + 1] + 0.4ma,(1 - v*)sin a

e 87(1+ v) cos 8 sin (e, + Nb) ’

(31)

where b, v, a, h, have evident meanings (see also egs. (29)), a; is the lattice
parameter and ¢, the elastic deformation into the topmost layer, N the number of
MD’s generated, ¢ the angle between the {111} slip planes in the alloy and the
free (001) surface and 6 the angle between the MD Burgers vector b and the [110]
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direction. Note that the line energy of the surface step has been expressed in
terms of shear modulus and Poisson’s ratio; the last term in the numerator. Their
experimental results are consistent with the introduction of MD’s by the Mat-
thews mechanism of activating glide of the threading dislocations on their slip
planes and also with this mechanism occurring in the topmost layer being grown
at any given time. Comparison of their calculated values of critical thickness with
their measured values shows reasonable agreement.

2.2.4. MD formation by climb

The above arguments rely on the glide of dislocations into the interface. It has
also been observed that MD’s are introduced into the interface by climb [74, 82].
Even at relatively low temperatures climb can be the dominant mechanism for
relieving MS through the introduction of MD’s. Matthews equated the climb force
on a dislocation due to MS to those forces that oppose climb, and calculated the
critical thickness for the generation of MD’s by climb (6, 14]. He included the
possibility of faulted distocation loops as well as the extra energy associated with
creating or annihilating new surface during climb. Since MD’s generated by climb
would naturally be in edge orientation the climb force is simply Bbhe cos ¢, +
Db In(h/b), where ¢, is the angle between the glide plane and the free surface.
Since ¢, is naturally small we may approximate the width of the surface strip
created or annihilated by b and the relevant force due to line tension by *o,b,
where g, is the surface free energy. It follows as for glide that

_ D[in(h /b)+ 1] = g,
¢ Bf = v,/ cos 4,

Whether or not this mechanism operates will be controlled by the availability of
point defects provided thermally or otherwise.

The climb of MD’s out of the interface during interdiffusion of two crystal
halves of a bicrystal has also been considered [83-85]. These considerations of the
climb of MD’s have in common that the MD's leave the interface by climbing in
both directions i.e. toward both surfaces. This can lead to threading dislocations
or to a distribution of MD’s throughout a zone of increasing thickness with
increasing interdiffusion or to polygonization walls. The additional influence of an
excess of point defects generated by the Kirkendall effect has been discussed
(6, 86]. The Kirkendall effect can either aid or hinder the climb process of the
MD’s, depending on the relative diffusivities of the atoms.

h

(32)

2.3. Geometrical criteria

Geometrical criteria are not true equilibrium [24] criteria. Most of the geometrical
models for accommodating misfit are of the type introduced earlier [3, 5] which in
effect relate a closure failure to a dislocation density. This model is usually
applied to planar interfaces that are narrow in thickness. There exist rather thick
interfaces over which MD’s accommodate the misfit in a thick transition region,

i
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referred to as a continuously graded junction. The anmeated density n, of misfit
dislocations in a cross-section of the graded interface can be related to the linear
density n_ of misfit dislocations in an abrupt interface of the same misfit as that of
the graded interface when a transitional interface thickness w/ is obtained [87].
When the graded interface is sufficiently thin that w, = 1/n_ then n, =n;. For
interface thicknesses below the transitional value w, the misfit dislcc)lc'a_ltio spacing
is fixed at the value 1/n . For interface thicknesses above w the mmgz density
of misfit dislocations is proportional to the lattice constant gradient. These
considerations are useful for relating dislocation densities in the substrate, abrupt
interface and graded interface in a unified way.

The physical basis for these models beyond geometrical considerations is the
relief of long-range stresses. In effect the geometrical models do not minimize
long-range stresses by considerations that balance energies or forces but instead
require that the long-range stresses be zero. Therefore they should be reasonable
models when the misfit is not small, i.e. in a regime where energy and force
balance considerations show that the residual long-range stresses should be near
zero once the critical size is exceeded. In fact it has been shown that the mode of
MA becomes vernierlike as the misfit increases, with vanishing MS (i.e. longer-
range stresses), as for rigid crvstals. Furthermore, deep minima in the AB
interaction occurs for one-dimensional matching and maximum depths for com-
plete registry. This provides energetic justification for the geometrical models [8].
The half-widths of the minima are zero for infinite interfaces and increase with
decreasing interface area.

The usual task of the geometrical model is to find the required MD density that
will accommodate the misfit rather than to predict a critical size. It is also useful
for selecting the various types of MD’s that accommodate the misfit {3, 29, 88].
There is, however, one geometrical criterion for critical size that is both simple
and useful for estimating values quickly. Brooks [89] used the classical concepts of
dislocations to arrive at essentially a geometrical criterion for critical size of a

misfitting sphere by simply equating the misfit f multiplied by the sphere diameter

2R to the Burgers vector b of the MD. Physically this criterion is equivalent to
requiring the introduction of a MD into the interface when the accumulated
displacement from the misfit vernier causes an atomic shift to the next available

potential energy trough, as was noted with regard to eq. (25c). The Brooks

criterion is a good rule of thumb that gives critical-size values that are not very
different from those provided by most sophisticated criteria [64].

3. Calculations: non-equilibrium

In the foregoing we have discussed existing calculations of critical misfit and
thickness based on equilibrium criteria. Empirical data, particularly on semicon-
ductors, exist that simply cannot be understood in terms of equilibrium principles
and can only be interpreted on the basis of non-equilibrium considerations and on
the supposition that the path towards equilibrium goes through one or more, or
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perhaps a distribution of, metastable configurations separated from each other
and from the final stable configuration by energy barriers of the kind discussed in
relation to eq. (16). For example, when the bicrystals are initially free of
dislocations, MD’s need be nucleated, possibly in the form of critical sized loops
that would grow spontaneously in the presence of MS stresses. Misfit-accom-
modating dislocation loops have indeed been observed in metals [34, 35] as well as
semiconducting epicrystals |90, 91). The processes of approach towards equilib-
rium states clearly involve thermal fluctuations, and knowledge of the height of
the energy barriers, e.g. the nucleation energy U of a MD loop that would
continue to grow in the presence of the MS induced stresses. and of the rate or
degree of advance towards equilibrium, are of vital interest. The latter, in
particular, would assist in distinguishing the equilibrium or non-equilibrium
nature of experimental data.

3.1. Monolayer approach

Both these questions have been addressed previously. Continuum theory predicts
that U ~200eV [52, 78], which completely rules out the thermal acquisition of
MD’s in an otherwise perfect crystal. Clearly U will be reduced by the MS
(Peach-Koehler) stresses in a coherent epilayer. In fact. Frank and van der
Merwe [46] have shown, using the one-dimensional model that the activation
energy for the introduction of a MD in a coherent ML is

U, = (4W, €,/m)(1 = f7€3)! ° — f¢, arccos f€,] (33)

per atom row of the ML, where the quantities in this relation have been defined
in egs. (19). The energy U, has a maximum value of AWl /m ~9IMNgat f=0,
diminishes to about 2W, at the misfit " =2/7€,in eq. (19) where a coherent ML
becomes unstable and vanishes at

fO=16=nf"12 (=14%). (34a)

In metals W, ~0.2-0.5eV. Thus above f = f, MD's enter spontaneously without
the assistance of thermal energy. In accordance with eq. (14) this defines
(crudely) a critical thickness

h = mw’h /4 ~2h, (34b)

above which MD’s will enter spontaneously for given f < f!').

3.2. Nucleation of misfit dislocation loops

The spontaneous generation of MD's in practical cases was also considered by
Dodson [52]. He realized that the smallness of the critical MD loop radius makes
a continuum approach invalid and that therefore an atomistic approach is needed.
He carried out calculations on Si considering a model system consisting of a

S db, cf.l f-"
(38)
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tetrahedral slab with (111) faces and periodic boundary conditions in the plane of
the interface using a super unit cell of 7x 7 atoms extending to a depth of 6
monolayers. Dodson [92] employed modified Tersoff potengials using Monte
Carlo techniques. He concluded that a climb MD loop of partial having a
radius of 2 A becomes critical (forms spontaneously) at a compressive misfit of
11.2%. This is greater than the 4% estimated by equilibrium theories and very
much greater than those which had been observed. Dodson suggests that perhaps
the most significant limitation of this calculation is that it neglects the influence of
existing surface steps. A feeling for the magnitude of this critical misfit may also
be acquired if one compares this value of 11.2% with the critical misfit f") =1/¢,
(in eq. (34a)) of about 14% for spontaneous generation of edge-type glide MD’s
in the one-dimensional ML model. In any case, these calculations clearly suggest
that considerations on the nucleation of MD’s in an otherwise perfect crystal will
not generate satisfactory understanding of observed non-equilibrium phenomena.

3.3. Overcoming the Peierls barrier

More recently Tsao et al. [93] have extended the foregoing work on non-
equilibrium systems and measured the strain relief in metastable Si Ge,_,
strained layers grown on (001) Ge substrates and concluded from their data and
the comparison of the Peach-Koehler MS force component F; ., parallel to the
interface and the corresponding opposing force Fy, ,, due to the line tension (self
energy) of the dislocation (respectively F; and F, of our notation in eq. (13c))
“that metastable strained layer breakdown is most directly correlated, not with
thickness A and lattice mismatch f, but rather with (1) an excess stress 7, =
2(F; pay = Fp par)/hb and (2) temperature”.

Using the expression for the Peach-Koehler force and the Volterra form of line
tension the authors obtained

_2éu(1+v) p(l-vcos’a) In(4h/b)
Texe 1-v 27(1 - v) hib

in the foregging notation, where the angle a between the MD line and its Burgers
VeCtor is 6ﬁin the present case.

Whereas the condition 7., =0 is equivalent to F=0 in eq. (13c) and is still
valid for equilibrium, the energy barriers temporarily delay the transition to
equilibrium. At a temperature of 494°C strain relief became observable when
Tyl 1t =0.024,

Scaling excess stress with the shear modulus p and temperature in Kelvin with
the melting temperature T, allowed the authors to construct experimentally
confirmed stress/temperature stability diagrams which provide a simple unified
description of the stability-metastability regimes for Si_Ge,_, strained layers.

Since the derivation of 7,,_ assumes the presence of threading dislocations one
may speculate that the relevant barriers are those due to the Peierls stress
opposing the glide motion. The net driving force (F; — F,,) which consists of the

e=f (33)

roohc[ °
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Peach-Koehler MS force diminished by the line tension is proportional to 7, . It
reduces the height of the Peierls barrier {61.94]. When the barrier height is
sufficiently reduced by increased layer thickness the frequency with which the
barrier is overcome increases to the extent that strain relief becomes observable.
Thus the finding of the authors can be understood in terms of fluctuation
principles.

3.4. Overcoming the surface barrier

Sharan and co-workers [95] also recently dealt with the problem of the critical
thickness-misfit dependence of GeSi alloy epilayers on (001) Si surfaces. They
considered the inward glide on a (111) slip plane of a long straight 6®4disiocation
that had been nucleated “‘at™ the surface, and calculated, using *‘surface disloca-
tion” techniques to satisfy boundary conditions, the (surface) energy barrier U,
per unit area of interface (comprising self energy as well as work done by the MS
stress) which it has to overcome in its passage from the free surface to the
interface. The barrier U, has furthermore been calculated on the assumption that
there is a sequence of MD’s of sufficient density to accommodate all the misfit (as
expressed in terms of MD spacing), while not affecting the MS stress. The authors
adopted the cr#rion that strain relief commences (the critical misfit is reached)
when E; = U, where E; is the misfit strain energy per unit area of interface when
f is entirely accommodated by MS. The fact that this approach vields consistently
higher values of critical misfit than the approaches of Matthews [6, 14] and others
reflects that the present approach takes into account the opposing image force on
dislocations when they recede from the free surface and the fact that the criterion
E = U_is a non-equilibrium extension of the approximate equilibrium criterion
(15) which overestimates the critical parameters. Although the theory is not a
true nucleation theory it involves the concept of an energy barrier characteristic of
a transition from a metastable to a stable configuration. The approach also does
not incorporate the Peierls barriers [14, 93] thought to be important in the
semiconducting materials concerned.

3.5. Quasi-nucleation approach

Another critical misfit calculation that is significant and had also been controver-
sial is the one of People and Bean [75], who developed an analytical expression
for h_ to account for the large discrepancy between observed values and those
calculated from the expressions of Matthews [6, 14] and van der Merwe [56]. The
authors essentially assumed that the energy E, of a MD, which they simply took
to be of screw type [29], is very much localized within a vertical wall spanning an
interfacial area L X w (L =MD line length and w =MD “width™ taken as five
(110] spacings for Ge,Si_, alloys). They furthermore assumed that 4, is reached
when the portion of E; contained in the volume of the wall exceeds E. This
approach, which the authors presented as a nucleation approach but clearly is not

i
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a true one, also contains elements of the criterion in eq. (15). The approach was
subsequently also employed by Luryi and Suhir for finite substrates {23]. In
equilibrium approaches one finds that the critical thickness depends on the misfit
to a power between —1 and - 1.5 [57]. The effect of the fixed width of the (screw)
dislocation is to yield a misfit dependence of the critical thickness near a power of
-2 as in the crude approach to the result in eq. (20). and apparently yielded
agreement with their data. In effect this approach is trading all of the MS energy
for an almost fixed energy barrier whose value was empirically adjusted through
the dislocation width to fit the experimental data on silicon-germanium alloys
[76]. To understand the physical details of this approach is difficult but its success
seems to lie in picking a nearly fixed energy barrier so that the explicit square
dependence of MS energy on misfit is transmitted to the expression for A_. It is a
quasi-nucleation approach in which energies in finite volumes are compared
rather than total energies as for equilibrium. Furthermore, it has recently been
argued that the authors made serious flaws in the interpretation of the results [96].
Because of its controversiality this paper had the merit of stirring up great
activity.

3.6. Misfit strain gradient (MSG)

An interesting case of critical thickness concerns epilayers on substrates of finite
width. It makes use of a significant misfit strain gradient (MSG) to accommodate
the misfit f. Luryi and Suhir adopted a rigid substrate width of 2¢ along the
one-dimensional misfit direction and an epilayer of the same width to calculate
the MS energy E; per unit area of the interface for the case of a coherent
interface with a strain field decaying exponentially with distance normal to the
interface [23]. They showed that when the width ¢ is small in comparison to the
thickness &, there is an effective thickness 4, smaller than A that characterizes the
limit of the strain field. In other words E; remains finite even though h becomes
infinite. The authors defined an effective finite epilayer thickness h, by equating
the MSG energy E; per unit interfacial area, calculated on the basis of the stress
distribution on the mid plane, to [Ef%(1 ~ v)]h,, i.e. as though there exists a
aniform energy “density” up to a distance h, from the interface, obtaining

bl

o+ _Cf) _mmniey £ _ [ (f)]
h, -h(l sech 5 (1-e ) s =h| fy A \ (36a)
where the function ¢ i1s such that
I ~{h when € > h , (36b)
e~ 1&%/m when €<h, (36¢)

and £°=3(1-v)/2(1+ ), v being Poisson’s ratio. The quantity £, defined for
¢/h <1, is obtained numerically from (36a) and (36¢) and is about 0.89 for
Ge Si,_, alloys, so that h,/¢=1/4 in this case (¢ <h), whereas h, = h when
¢>h.

The authors furthermore calculated a critical thickness h¢ following People and
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Bean [75] by assuming that coherency breaks down with the introduction of a MD
when E; exceeds E,; E; and E having the same meaning as in ref. Wﬁ] This
yields for given f and ¢ the equation

b, ot g]{ . _20V27a(1 + v)
7lnb-A[f¢/<,), =kl A= T (37a)

for h{, where b (=4 A for Ge Si,_,) is the Burgers vector of the MD and a is the
lattice constant. The solution of (37a) is seen to be a function of fdz((/h:) and
may accordingly be written in the form

h{(f) = h A fw(€1h)) . (37b)

with the limiting value h_{ f} when ¢/h{> 1. The factor In(h./b) in (37a) results
from the concept of a cut-off radius (see egs. (11)) R = h. applicable when ¢ > h.
When ¢ < h the authors adopted as cut-off radius R = ¢ (=distance to lateral free
surface) and obtained for ¢, the equation in (37a) with ¢+ = ¢_. In the limit € < h
they accordingly obtained (using (36¢)) for (37b) the result

fmin(f) = hc{fg/\/—ﬁ} N (38)

The authors showed that the curve of h{( f) vs € has two asymptotes h_and ¢,
and that, at €/b=¢€_ /h. h!—=, i.e. when ¢ <(_, the critical thickness is
infinite. Equivalently this value of width, €_. . represents the size limit below
which the misfit is entirely accommodated by a MSG. It then is better described
as a situation for which there déxists a critical misfit f, that is a function of
{ < ¢_. <h. These calculations are qualitatively very significant because they
point to a new mechanism for avoiding MD's. They could be refined by allowing
relaxation of the substrate and by adopting a more physically based energy
balance analysis. For example the assumption of a uniform strain f at the interface

when ¢ is small may not be realistic {73].

3.7. Strain relief by crack formation

The acquisition of MD’s by the nucleation of critical sized MD loops at typical
temperatures has been ruled out. It is interesting though that a calculation of the
stress intensity factor for a crack gives a critical thickness above which crack
growth will occur as being near h_ for the nucleation of a dislocation loop. The
experimental value for critical thickness compared to that given by the above
calculation gave a value near h_ obtained from a balance of forces. This result
points to the growth of pre-existing dislocations as the operative mechanism of
coherency loss rather than the nucleation of new MD’s. There are, however,
several epitaxial systems for which insufficient dislocation slip is available to
accommodate the misfit and cracking occurs as an alternative [27]. To model the
critical thickness for cracking a Griffith criterion was adopted. The critical
thickness for cracking is equal to the critical Griffith crack length:

hcrack = 27(1 - V)2/”Ef2 (39)

15
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in which the surface free energy y of the crack has been approximated by
y = Ea, /10, E being Young's modulus [59] and a, the interatomic distance. The
third and somewhat extreme case. that the misfit stresses are large enough for
cracks to form spontancously, appears to be of less importance. Reasonable
agreement between experiment and the relation (39) was found [27] for an
epilayer with a cleavagelgnormal to the interface.

Crack formation of a different kind was investigated bv Hirth and Evans [78];
crack formation starting at the free lateral faces of a stack and propagating along
the interface. Accepting as postulate for A, that crack propagation proceeds
when the driving stress due to MS exceeds the resistance K'™ to crack growth they
obtained the value :

hoa= | ST (40)

Using reasonable estimates for K'™ this yields values of the same order as h_for
the introduction for MD’s.

3.8. Dynamics of strain relief

Recently Dodson and Tsao [97] used a phenomenological model of dislocation
dynamics and plastic flow developed by Haasen and co-workers [98] for diamond
structure materials to investigate the role of strain relaxation rate in experimental
data concerning critical thickness in semiconductors. The main features of the
model are: (i) the epilayer is initially strained to coherence (MS ¢é = misfit f) in a
metastable configuration, (ii) the MS is generated as a constant biaxial deforma-
tion relaxed by the introduction of MD network at the interface. (iii) the rate
process mechanism is the acquisition of MD's; elongation of existing dislocations
and the generation of new ones, (iv) a localized stress 7, exists that acts as a
driving force for the motion of dislocations, while the motion is retarded by
energy barriers needing thermal energy for overcoming them and (v) 7, can be
expressed in terms of the residual mismatch f— f(r) — é(h); f(1) being the misfit
accommodated at time ¢ by the insufficient density of MD’s (the plastic part) and
e(h) the equilibrium MS at thickness h. The authors consider a nearly dislocation-
free coherent layer and make provision for MD sources in terms of a background
dislocation density f;, obtaining the result

df(r)/de = Cu’[ f - f(r) — e’ (f() - fi) (41)

where u is the shear modulus and C a constant depending on temperature.
The authors concluded that this equation gives an excellent description of the
data [76] for SiGe alloys on (100) Si substrates using as model parameters
C=30.1 and f=10"" The results are very insensitive to the unknown value for
fy- For example, while the critical misfit for a 500 A epilayer is 0.004, both
theoretical and experimental values only deviate observably from coherency at
f=0.1. These considerations constitute significant progress towards a successful

dynamic description of strain relief, i.e. non-equilibrium critical phenomena.

P}Me,(
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4. Correlation with experiment

There are numerous techniques by which loss of coherency may be observed.
Typically the experimental measurements of the critical thickness for coherency
loss rely on observations of MD’s or such indications of their presence as moiré
fringes in electron micrographs. The roles of the MV, MSG and MC mechanisms
are usually insignificant and ignored. Further, the measurement of critical thick-
ness and misfit is not a precise one. Nevertheless a sufficient number of meas-
urements and estimates have been made to permit the disclosure of some trends.
We will not consider all of the measurements reported in the literature, but rather
deal with them in several categories. Metal islands, metal films, semiconductor
systems and superlattices will be covered, but precipitates will be omitted. For a
l:cc\))llection of data on the critical size of precipitates one may consult refs.@]and
14

There are two measurements of the critical size for loss of coherency between
island overgrowths and their continuous substrates. For cobalt islands on copper
substrates and y-iron on copper the respective sizes of the largest islands that
remained coherent at 38 nm and 75 nm [13]. The corresponding calculated values
are 36 nm and 87 nm [59]. This closeness of agreement between measured and
calculated values is not typical and therefore may be somewhat fortuitous.

A number of measurements of h_have been made on thin films of nickel on
copper substrates and Cu on Ni. Gradmann measured the critical thickness in a
Ni/Cu vapor deposit as about 1.0nm [9]. Similar results were obtained for
electrodeposits of Ni on Cu [11, 99]. Vapor deposits of Cu on Ni showed an h_ of
0.8 nm [100]. The calculated values using both the energy balance and force
balance viewpoints yield nearly equal values of near 1.2 nm. which are somewhat
high [14, 59]. McWhan reported on h. measurements of 4.0 nm for the case of a
Cu/Ni superlattice [101]. This value for the Cu/Ni superlattice is about four times
that for the single layer, a result in agreement with calculation [15, 57}. We note
here that the measured values are less than the calculated ones. The misfit in the
Cu/Ni system is about 2.6%.

Systems with larger and smaller misfits have also been studied. Thin films of
gold on silver which have a misfit of 0.2% have been found to lose coherency
when the overgrowth is around 28 nm [10]. This value agrees closely with the
calculated value of 24 nm [59]. Two large-misfit systems have been studied. The
misfit between films of y-iron and a (111) gold substrate [102] is about 14% and
the measured value of h_ is near 0.1 nm, which is too low by a factor of three.
However, at these thicknesses the model is known to become somewhat inaccu-
rate [59]. The Ag/Cu system with a misfit of abot 12% was studied, but instead of
a measurement of h_, the elastic strains were measured as a function of film
thickness down to a value of about 0.4 nm [103]. The deposit was not continuous
at this thickness but the islands were over 1 um wide and hence approximated a
two-dimensional overgrowth very well. Coherent growth was not observed. The
functional dependence fit well the model of Ball [104] except for very small
thicknesses where the van der Merwe calculation fits better [56]. The model of

> >
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Ball is based on a parabolic interaction potential while that of van der Merwe is
based on a sinusoidal interaction potential. The agreement between the measured
and calculated elastic strains may be taken as agreement between the critical
thickness approach and experiment. Another way of comparing data to theory is
to look at the calculated value of critical misfit for a continuous deposit of
monolayer thickness. The calculation by van der Merwe [54.56] gives the
equilibrium value of this critical misfit as about 7% for average atomic bonding.
At this misfit the introduction of MD’s still requires an activation energy which
only vanishes at about 10% misfit depending on relative bond strengths [54].
From this point of view the Fe/Au results that show coherency at 14% misfit
suggest that the adatom-substrate bonding is strong in comparison with adatom-
adatom bonding as is implied by eqs. (19). For Ag/Cu the agreement likewise
suggests bonding of about equal strength. There is another observation related to
this critical misfit value. The Pd/Cu and Cu/Pd systems were found to be
coherent in the initial stages of growth [105]. The misfit for these deposits is about
7%, a value near the critical misfit for a monolayer and hence in agreement with
calculation. Only fair agreement with this calculated value of critical misfit is
obtained from antimony deposits on tungsten [106]. Here the misfit is just near
8% and the critical thickness for loss of coherencv was measured to be three
monolavers for (100) and (211) oriented substrates. No coherent growth was
observed for (110) oriented substrates. This is likewise consistent with weak
bonding (smaller amplitude W, in eq. (20)) on the smoother (110) b.c.c. tungsten
surface.

The trends indicated by the above comparisons between measured and calcu-
lated values of critical thickness and critical misfit for metal systems is that the
agreement is as good as one could expect from the crude modeis employed. In
view of the lack of precision in the data and the approximations involved in the
models, the case of metal epitaxial growth is adequately described by equilibrium
considerations. The measured and calculated values of equilibrium elastic strain
agree less well than critical thickness and misfit comparisons between measured
and calculated values [14]. But even there the disagreement is not too severe.
Significant discrepancies do occur, however, when one makes similar comparisons
to those above but for the case of non-metals {14, 107]. The significant differences
between the two cases can be understood in terms of the availability and mobility
of MD’s. The metal case has relatively higher values of both as compared to the
non-metal case.

The growth of GaAs on substrates of GaAs doped with indium showed a
measured value of /1 near 0.7 um [108]. The misfit for this system was measured
to be 3.2x 10™* which yields a calculated value of 4_ from the force balance
equation of Matthews [14] of 0.59 wm. The measured value exceeds the calculated
value by an acceptable margin in this case. Other experiments that favorably
compare with calculated values of h, may be found in some examples of
superlattice growth. In a superlattice of PbTe/PbSnTe where the composition of
the PbSnTe corresponds to a misfit of 0.39% a value of h. near 50 nm was
measured. This compares favorably to the value of near 78 nm calculated from an
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equilibrium minimum energy balance approach [57]. A superlattice of GaAs and
InGaAs for which a misfit of 1.9% exists showed a measured value of 4, as 18 nm
[109]. The calculated values for this case are 25nm from the force balance
approach [15] using the Volterra model and 9 nm from the equilibrium approach
[57], using a parabolic interaction potential. Other examples of reasonable
agreement between measured and calculated /i values for superlattices could be
quoted for non-metals {15.16]. It is instructive. however, to look at those cases
that do not fit the equilibrium calculations.

Silicon epitaxially grown at 570°C on GaP substrates has a misfit of 4.6 x 107"
at 570°C and of 3.6 X 10" at room temperature and a measured value of A, of
100 nm {110]. The calculated value using the force balance approach is 33 nm [14].
An order of magnitude discrepancy was found for the case of germanium
deposited at 350°C on GaAs substrates having a misfit of 0.7% and a measured A,
of 2 um [107]. The authors showed that smaller values of residual strain and
smaller h_ values, close to the calculated values of h_, were observed when the
specimens were annealed at 600°C for 30min. Similar discrepancies of the
magnitude found for Ge on GaAs were observed in magnetic garnet {27, 111}]. In
this case the nearly dislocation-free substrates and high nucleation barrier to MD
generation led to relaxation of the MS through cracking of the epilayer on
cleavage planes normal to the interface [27].

Two further examples of non-metal layers deviating substantially from the
calculated critical thickness salues are provided bv InGaAs grown on InP
substrates [112] and by SiGe alloys on Si substrates |75]. In the former case a
number of thickness—misfit combinations were investigated for the presence or
absence of MD’s. A map of the data points was constructed from which several
deductions can be made. The dependence of i, on misfit is verv steep for both
positive and negative misfit values. The data show some scatter, but for a
thickness of 4 um a critical misfit of 1.2 X 107" is observed and for a misfit of
2x 107" a critical thickness of less than 1 um occurs. They showed that cross
hatch which loosely correlates with MD’s can be imaged several micrometers into
the InP substrate showing that MD’s penetrate to great depths in the substrate but
are not present in the InGaAs deposit. The above values of misfit—thickness pairs
are not in agreement with the calculated values ‘on the basis of equilibrium
principles. the former being almost an order of magnitude greater than the
calculated h_ values. This discrepancy coupled with the very strong dependence of
h. on misfit suggests that the equilibrium model is not applicable to the behavior
of this system. A similar discrepancy of an order of magnitude between the
observed and calculated h_ values for SiGe alloys on silicon substrates also
suggests a model based on other than equilibrium principles.

It is clear from the mode!l of People and Bean {75], and subsequent review by
Bean [113] as well as from the success of the incorporation of a thermally
activated process in the model [107], that one must include the nucleation and
mobility of MD’s in an analysis of a misfit accommodation by MD’s in non-metal
systems. Cabrera was the first to recognize the importance of the barriers to MD
acquisition {71]. It is this problem that is receiving renewed attention. The only
true nucleation theory approaches th